
 Apr-08 Java Jazz Up 1

2 Java Jazz Up Apr-08

 Apr-08 Java Jazz Up 3

April 2008 Volume I Issue X

“Optimism with determination lets you
hit the goal harder”

Published by

RoseIndia

JavaJazzUp Team

Editor-in-Chief

Deepak Kumar

Sr. Editor-Technical

Ravi Kant
 Noor-En-Ahmed

Sr. Graphics Designer

Suman Saurabh

Graphics Designer

Santosh Kumar
Amardeep Patel

Editorial

Register with JavaJazzUp

and grab your monthly issue

“Free”

Dear Readers,

We are back here with the Holi (Mar 2008) issue of
Java Jazz-up. The current edition is specially designed
for the sprouting technocrats. This issue highlights the
interesting Java technologies especially for the
beginners.

Though it was a hard job to simplify the complexities of
the technologies like Hibernate 3.0, struts 2, JSF and
Design Patterns. Still our team has done a marvelous
work in making it easy and simpler for the new
programmers regime. This issue reflects our consistent
attempts to avail the quality technological updates
that enforce the readers to appreciate it a lot and be a
part of its Readers Community.

Java News and Updates section provides the latest
updates of the things happening around the globe
making the readers aware of the java technological
advancement. In this section, you will know the new
features introduced in the existing tools, utilities,
application servers, IDEs, along with the Java API
updates.

We are providing it in a PDF format so that you can
view and even download it as a whole and get its hard
copy.

Please send us your feedback about this issue and
participate in the Reader’s Forum with your problems,
issues concerned with the topics you want us to
include in our next issues.

Editor-in-Chief
Deepak Kumar
Java Jazz up

4 Java Jazz Up Apr-08

05 Ajax-an Introduction | Developing web application has now been a cup of coffee for
developers having the knowledge of Ajax –a technology that was not so easy and hence not
popular earlier- now one of the most frequently used technologies.

08 Ajax Technology | Asynchronous JavaScript and XML or Ajax for short is a type of
asynchronous programming technical to develop Internet applications. Google made it
popular by incorporating the technology in its search engine interface in the year 2005.
‘Google Suggest’ is the most popular Ajax application.

09 How Traditional Web Application Works| This section explores the working of the browser
in traditional web applications and then in the next section we will explore the
working of Ajax based application.

10 How Ajax Works |Ajax adds an extra layer of functionality in the communication model. Ajax
engine acts as an intermediate between the user interaction to the browser and the server
system.

12 Ajax-Technical Introduction | We have already discussed that Ajax uses JavaScript to
make a request from the server. For this we need an object of such class, which can provide
this functionality.

16 Ajax Example| This example is simple one to understand Ajax with JSP. The objective of the
example is to display the current date of the server on the page on each key up event by the
user without refreshing the current page. This example also shows the key value entered by
the user in the input text field along with the current date and time.

45 Ajax Frameworks Types| There are two types of Ajax based frameworks used in the web
programming nowadays: Server-side Framework and Client-side Framework. Server-side
framework is installed inside the server while Client-side framework entertains the user’s browser
to access the web. Similarly, the code executed on the Web server is considered as Server-
side code while if executed on the user’s browser is known as Client-side Framework.

47 Five cool Ajax widgets| With the Web 2.0 wave came a whole new emphasis on the user
experience. Part of that experience is the development novel ways to interact with and
present information to users. Often, these new interfaces are called widgets and use
Asynchronous JavaScript + XML (Ajax) to communicate with the server. Discover five widgets
that you can use to enhance the interactivity of your site.

60 Five common Ajax patterns| Asynchronous JavaScript + XML (Ajax) was certainly the
technology buzzword of 2006 and looks to do just as well or better in 2007. But what does it
really mean for your application? And which common architectural patterns are used widely in
Ajax applications? Discover five common Ajax design patterns that you can use as a basis for
your own work.

75 Advertise with Us | We are the top most providers of technology stuffs to the java
community. Our technology portal network is providing standard tutorials, articles, news
and reviews on the Java technologies to the industrial technocrats.

76 Valued JavaJazzup Readers Community | We invite you to post Java-technology
oriented stuff. It would be our pleasure to give space to your posts in JavaJazzup.

Content

 Apr-08 Java Jazz Up 5

Ajax-an introduction
Ajax-an introduction

Developing web application has now been a cup of coffee for developers having the knowledge of
Ajax –a technology that was not so easy and hence not popular earlier- now one of the most
frequently used technologies. Web application nowadays, as one of the basic needs in terms of
fulfilling a small necessity or even more advanced form in the world of Internet, is undoubtedly the
best way to convey any message and creation to the world over. Compared to the older generation
of Internet the new technologies in the WWW has made it a hassle free work for developers in
developing a more interactive, responsive and dynamic site and this has become possible because
of Ajax.

Ajax plays a major role in developing fast, interactive, dynamic and responsive site and can run on
various operating systems, computer architectures and browsers. Its asynchronous characteristics
have made it popular among the users to develop their site using Ajax.

‘Rich Internet Application’ and ‘Web 2.0’ usually use this application tool to make site more interactive.
The above two web technologies (RIA, Web 2.0) are being used these days to develop popular web
trends, ‘Social Networking Sites (Orkut, Facebook, MySpace, Ibibo), wikies (Wikipedia) and multimedia
content sharing sites (YouTube, Megaupload).

Here, surfers/ viewers will able to access ‘the complete’ Ajax information. This article is suitable
both for beginners and experts.

Ajax sometimes also called the blend of Asynchronous JavaScript and XML is a speedy and quick-
responsive way of programming that makes user stress-free. In Ajax, the data, content, and
design are merged together to display a perfect picture of programming. It is usually used in new
trends of web technologies wikies and content sharing sites.

History in brief

Ajax is only a name that not only reflects any function of the programming but facilitate user works
with a pre-existing set of tools to develop the website. Before commencing the name ‘Ajax’, it was
being used as a name of XMLHTTTP in the programming that was inspired by the earlier one with a
nearby similar concept XMLhttpRequest.

In the earlier version of Internet Explorer (up to 4.0), a class XMLHttpRequest had been used in
JavaScript to make IE browser that was later implemented in the modified form by various web
masters to make their own web applications. Google has contributed most to its prominence by
implementing XMLHTTP in Gmail and GoogleMaps in 2005.

But the true popularity bursts when XMLHTTP has got its present name ‘Ajax’. The ‘term’ was first
used at February 18, 2005 in the web world by Jesse James Garret in his essay called “Ajax: A New
Approach to Web Applications”. Later on, this technology was immensely used by web companies in
developing various technologies like Rich Internet Application, Web 2.0 that were further used to
make commonly known websites - ‘social networking’ and ‘wikies’.

Why to use Ajax?

Before interacting to Ajax, let’s know first about ‘why should we use Ajax despite of having so
many programming tools to develop a web application or site?’ The reason is simple but strong.

6 Java Jazz Up Apr-08

The functionality of Ajax puts it ahead among the other web tools. Ajax not only builds a fast and
dynamic website but also saves the resources. Unlike other web tool, it generates a rich-client
application that uses the client’s computer for accessing data instead of sole server or network.
Earlier the processing of web page used to hold only server-side before sending the whole page
within the network.

On the other hand, Ajax can not only modify a portion of the page or even a single field displayed
by the browser but can also update it without asking the remaining content to reload. For example:
if user changes any field in the form and uploads it, the changes display immediately in the form
without showing any error or asking to reload other processed field.

Defining Ajax

Ajax or AJAX is not a single technology but an amalgamation of several technologies that is being
used to develop interactive web applications. It is some time referred to Asynchronous Javascript
with added XML, which is used to enhance the interactivity, speed, functionality, and usability of the
web pages.

Here, the term Asynchronous refers to functionality of the data processing in which user can
perform the other request without interfering the backend processing and the desired output
displays after ending the page-loading process. For example: if user makes any changes in any
form written in Ajax and sends request for changing it through upload the page, the back-end data
processing begins and again if during the processing user wants to make another change in the
form, then there is no need for the user to wait until the process of page loading finishes. The
second made changes would be displayed on the screen.

So, Asynchronous AJAX stands for a combination of techniques that allows web pages to be more
interactive and behave like local application that is also know as ‘Rich-Client’ application. In short,
we can define Ajax as an asynchronous powerful technique that integrates:

• Standards-based presentation using XHTML and CSS
• Data interchange with XML and XSLT
• Dynamic display and interaction of pages using through Document Object Model (DOM)
• Asynchronous server communication using XMLHttpRequest
• JavaScript to weave the net among one another

Advantages of Ajax

The biggest advantage of Ajax is its bandwidth usage because it generates HTML locally within the
browser and does not require reloading the whole data after amending any portion of the
programming. Its speedy response and tendency to share the client’s system for accessing content
reduces the bandwidth consumption for web applications and server load.

The other foremost advantage is that it supports a wide range of operating system platform,
computer architecture, browser and languages.

Disadvantages of Ajax

Despite of having several advantages, Ajax also has some common disadvantages and some of
them are:

Ajax-an introduction

 Apr-08 Java Jazz Up 7

• Though Ajax is a cross platform tool, yet it has also a limitation, as it cannot run in the older
version of Opera and Safari browser and needs to enable XMLHttpRequest to run Ajax. The
implementation criteria also differ marginally in all sorts of browsers.

• Ajax generates dynamic pages that do not register itself with cookies, so user can’t find
previous pages by pressing ‘Back’ button, but can enable with GET HTTP requests. User
also feels to bookmark the earlier pages after updating it and for avoiding this problem;
programmer must feed URL fragment identifier. Cookies also don’t work with large request
and hence need to add the cookie request.

• The IFrame requests in Ajax barred synchronous request and for it, server pages must be
designed to work with IFrame request but the implementation process varies in several
browser. It can leave extra request in history as per depends up on the browser.

• While making programme, user must consider network latency carefully that can be proved
panic for the user with an unusual delay in processing if it is not written properly with
correct handling XMLHttp request.

• In the absence of proper sitemap, it was difficult for the Search Engine Optimizer to search
the web page as search engine too feel difficulty to execute it, while if it is provided data
with full-page refresh.

• As per the latest report, some researchers have found that a large number of power users
are not pleased with the performance of Rich Internet Application that was based on Ajax
in terms of local rendering of complex business. The rendering process was taking uneven
delay.

Ajax-an introduction

8 Java Jazz Up Apr-08

Ajax Technology

Asynchronous JavaScript and XML or Ajax for short is a type of asynchronous programming
technical to develop Internet applications. Google made it popular by incorporating the technology
in its search engine interface in the year 2005. ‘Google Suggest’ is the most popular Ajax application.

Ajax is a combination of several technologies that works together to make a web application similar
to traditional windows desktop applications. Ajax fills the gap between desktop application and web
application. It brings richness of desktop application into Internet world. It is possible to develop
highly interactive web applications using Ajax frameworks. The Ajax technologies make it possible
to create better, faster, and user-friendlier Internet and Intranet web applications with ease. Examples
of Ajax based applications are Gmail and Yahoo Mail.

These days, there is a huge popularity of Rich Internet application in the programming world and
companies are looking for Rich Internet applications for their clients. Rich Internet application or RI
is nothing but Ajax based application that brings richness and responsiveness to the web applications.

Components of Ajax Technology

Ajax is based on many existing technologies such as CSS, HTML, DHTML and JavaScript, by which
programmers are already familiar with in developing web applications.

So, learning Ajax is easy and it requires less time. Let’s understand the core components of Ajax
Technology. Ajax application uses the following technology in combination:

• XHTML, HTML and CSS
These are used for creating the UI and styling the web pages to make it more appealing.

• DOM
The Document Object Model or DOM is used by the JavaScript code to produce interactive
Ajax applications.

• XMLHttpRequest or XMLHTTP
XMLHttpRequest or XMLHTTP is used to retrieve the data from server.

• Java Script
JavaScript is used to bind everything together.

Ajax Technology

 Apr-08 Java Jazz Up 9

How traditional web application works
How traditional web applications works?

This section explores the working of the browser in traditional web applications and then in the
next section we will explore the working of Ajax based application.

Activities involved from making a ‘user request from the browser’ to ‘getting response back to
the browser’ can be divided into five steps:

• User does something in the browser (For example, User makes a request for a web
page)

• Browser sends request for the page to the server
• Server finds the request and generates the requested web page (HTML+CSS) as a

response to the request.
• Data is returned in response to the request.
• Now the browser replaces view with the data sent as response from the server.

Some points:

1. It all happens only when the user clicks on a link or pushes a button etc.
2. These five steps are involved in each such user interaction.
3. Request processing is completely synchronized with the user driven events i.e. user can now
involve with another request after processing the current request and getting response.
4. You can also bookmark the page, move forward and backward.
5. It provides a simple user and browser interaction.

10 Java Jazz Up Apr-08

How Ajax Works
How Ajax Works

Ajax adds an extra layer of functionality in the communication model. Ajax engine acts as an
intermediate between the user interaction to the browser and the server system.

In the traditional web application, the browser communicates the server directly. When the user
requests for a page for the first time, the server sends full HTML and CSS code at once. Now if the
user makes a new request from the page then the server processes the information, rebuilds the
page and sends the full page back to the client browser.

In case of using Ajax, the full page is loaded only once when it is requested first time. Ajax engine,
as an intermediate, takes the request for small segment of the page, which then requests information
from the web server asynchronously. Here, the word “asynchronously” means that the requested
data is collected in the background without interfering with the whole display and behavior of the
existing page.

 Apr-08 Java Jazz Up 11

How Ajax Works

Ajax engine does not send the entire page but only the necessary small amount of information to
the server. The engine then displays the returned data without reloading the entire page. Ajax uses
the JavaScript to asynchronously request and retrieve data from remote servers. Ajax uses XML to
collect numerical or text-style data to the browser. It uses JavaScript to extract data from the XML
and uses HTML and CSS to display.

The whole process makes the interaction very responsive and creates the feeling of a web application
like desktop application because information is displayed immediately.

12 Java Jazz Up Apr-08

Ajax - Technical Introduction

1) Getting the HTTP Request Object:
We have already discussed that Ajax uses JavaScript to make a request from the server.
For this we need an object of such class, which can provide this functionality. For this we have to
select any one of the following two classes depending on the browser:

1. ActiveXObject (For Internet Explorer browser) or
2. XMLHttpRequest (For Mozilla, Safari etc.)

To write browser independent code, you can follow the simplified code snippet below:

var xmlHttp;
 if (window.XMLHttpRequest) { // Mozilla, Safari, ...
 var xmlHttp = new XMLHttpRequest();
 }
 else if (window.ActiveXObject) { // IE
 var xmlHttp = new ActiveXObject(“Microsoft.XMLHTTP”);
 }

2) Deciding the method to be called after receiving the response from the server:
The next step is to decide which JavaScript function is to be called after receiving the response from
the server. In this method you can write the code to process and manipulate the data received from
the server. There are two ways to set the function for this purpose:

i) Set the property “onreadystatechange” of the Http request object to the name
 of that JavaScript function
For example, you want JavaScript function “myMethod” to be executed after receiving the response
from the server. Then you have to write the code like below:

XmlHttp.onreadystatechange = myMethod; // No bracket after the function.

Remember, this line is not for calling the method “myMethod” but only for assigning a reference to
the function, which will be called after receiving the response from the server.

ii) Using anonymous function:
Write the code of the function just at the same place instead of referencing the name of the
function. For example,

xmlHttp.onreadystatechange = function() {
 …………………..
 // Do something with the response data
 …………………..
}

3) Making an HTTP Request
Actually we have not made any request in the previous step. We decided only which method would
process the response data after receiving the data from the server. So now it’s turn to send the

Ajax - Technical Introduction

 Apr-08 Java Jazz Up 13

request to the server.

For this we use two methods of Http request object’ class:
i) open()
ii) send()

These methods can be used as given in the code snippet below:

xmlHttp.open(‘POST’, ‘time.php’, true);
xmlHttp.send(‘name=abc&age=25’);

open():

This method can take three parameters:

• First Parameter:
Name of HTTP request method (GET, POST, HEAD etc.)

• Second Parameter:
URL of the requested page to read data from.

• Third Parameter:
• A boolean value (TRUE, FALSE), to specify whether the request is asynchronous or

synchronous.

If it is set to TRUE the request is set as asynchronous i.e. the browser continues the execution of
JavaScript function even response has not been received yet from the server.
If it is set to FALSE then request is set to synchronous. In that case the browser waits for the
response of the server, which you may not prefer in case of fetching lot of data from the server.

Send():

This method is used to send data to the server with the request. If you don’t want to send any
then you can write code as below:

xmlHttp.send(null)

If HTTP request method is of type “POST” then send() method can be used to send any data to
the server as param and value pair. For example,

“name=abc”

You can send as much data to the server by creating the query string like this:

“name=abc&age=25”

NOTE:
If HTTP request method is of type “POST” then we have to change the MIME type of the request
otherwise the server will not accept such data. So, you have to follow the code snippet given below:

xmlHttp.setRequestHeader(‘Content-Type’, ‘application/x-www-form-urlencoded’);
4) Working with the Response data:

Ajax - Technical Introduction

14 Java Jazz Up Apr-08

In the second step, we decided the name of the method “myMethod” to be called after receiving the
response from the server. In this method, we write the code handling the response data. For
example, myMethod() can have code segment as given below:

function myMethod(){
 if (xmlHttp.readyState == 4) {
 if (xmlHttp.status == 200) {
 var str = xmlHttp.responseText;
 alert(str);

 }
 else {
 alert(‘Request failed’);
 }
 }
 else{
 alert (‘Request failed’);
 }
}

i) Checking the state of the request:
Here, readyState property of the HTTP request object “xmlHttp” is used to check the state of the
request. This property can have different values indicating the state of the request.

Value State of the request
0 Un-initialized
1 Loading
2 Loaded
3 Interactive
4 Complete

The method above checks first the state of the request. If it is equal to 4 it means the request has
completed and the response is received from the server.

ii) Checking the Status Code of the response:
The next thing that should be checked is the Status Code of the HTTP server response. The server
can send different status code depending on the request processing of the server. For example:

Status Code Definition
200 OK
400 Bad Request
401 Unauthorized
404 Not Found
405 Method Not Allowed
500 Internal Server Error

But for our purpose, status code “200” only is useful. Our method checks and if it is 200 then
everything is “OK”.

Ajax - Technical Introduction

 Apr-08 Java Jazz Up 15

After checking the state and status code we are sure and safe to proceed further. Now we can
manipulate the data sent as response from the server.

iii) Accessing the response data:
We have two options to collect the data:
1. xmlHttp.responseText: It is used to access plain text response from the server.
2. xmlHttp.responseXML: It is used to obtain XML formatted data.
In the method above, the response data is collected in the variable str and then it is used to alert
the message.

To dynamically determine the response types you can write:

var contentType = xmlHttp.getResponseHeader(“content-type”);

The possible returned content types are ‘text/xml’ or ‘text/plain’ indicating XML or plain text
content respectively.

Ajax - Technical Introduction

16 Java Jazz Up Apr-08

Ajax Examples
Ajax Examples

1. Displaying Time:

This example is simple one to understand Ajax with JSP. The objective of the example is to display
the current date of the server on the page on each key up event by the user without refreshing the
current page. This example also shows the key value entered by the user in the input text field
along with the current date and time.

TimeDisplay.html

<html>
<body>
<script language=”javascript” type=”text/javascript”>

function ajaxFunction(){
var xmlHttp;
try{

// Firefox, Opera 8.0, Safari
xmlHttp=new XMLHttpRequest();

}
catch (e){

// Internet Explorer
try{

xmlHttp=new ActiveXObject(“Microsoft.XMLHTTP”);
}
catch (e){

try{
xmlHttp=new ActiveXObject(“Msxml2.XMLHTTP”);

}
catch (e){

return false;
}

}
}

 Apr-08 Java Jazz Up 17

xmlHttp.onreadystatechange=function(){
if(xmlHttp.readyState==4){

var name = document.getElementById(‘name’).value;
document.getElementById(‘time’).innerHTML = “
Welcome “+name+”<hr/

>Current Server Time is: ” + xmlHttp.responseText + “</
font>”;;

}
}

var url = “time.jsp”;
xmlHttp.open(“GET”,url,true);
xmlHttp.send(null);

}
</script>

<form>
Enter Your Name: <input type=”text” onkeyup=”ajaxFunction();” name=”name” id=”name”/>
<div id=”time” ></div>

</form>

</body>
</html>

The input text field for user name has “onkeyup” attribute, which is set to the JavaScript function
“ajaxFunction()”. This method is called every time user leaves the key to move up after pressing the
key down. The “div” tag having “id” attribute as “time” is the area where the time is to be displayed.

Ajax code starts from here. “ajaxFunction()” first tries to get HTTP request object maintaining the
browser compatibility. In this example, this object is stored in the variable named “xmlHttp”. Read
how to get HTTP request object on page 12

Next step is to determine which method should be invoked after getting the response from the
server. In this example method is defined anonymously at the right place. Now the request for the
JSP page “time.jsp” is forwarded to the server.

time.jsp:

<%@page contentType=”text/html” import=”java.util.*” %>
<%
response.getWriter().write((new Date()).toString());
%>

The server executes the JSP code, which sends current date as a response. After getting the
response from the server the anonymous function is executed.

if(xmlHttp.readyState==4){
 var name = document.getElementById(‘name’).value;
 document.getElementById(‘time’).innerHTML = “
Welcome
 “+name+”<hr/>Current Server Time is: ” +
 xmlHttp.responseText + “”;
}

Ajax Examples

18 Java Jazz Up Apr-08

The function first checks if everything is fine. To get the text response, responseText property of
the xmlHttp object is used. Now the html div component is populated with the welcome string and
the response text.

2. Upldating First Name and Last Name using Ajax:

This example aims to update the first and last name of the user without refreshing the current
page. The user fills the user number and when looses focus from the input component, its first and
last names are updated. Put user numbers “1” and “2” only to show the results in this example.

UserInfo.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
<head>
 <title>Ajax and Jsp, Updating First Name and Last Name using Ajax</title>
 <script language=”javascript” type=”text/javascript”>

var xmlHttp = getHTTPRequestObject();
function showFirstLastName() {

xmlHttp.onreadystatechange = updatepage;

var userNumber = document.getElementById(“userNo”).value;
var url = “user.jsp?userNo=”+ userNumber;
xmlHttp.open(“GET”, url, true);
xmlHttp.send(null);

}

function updatepage() {
if (xmlHttp.readyState == 4) {

if (xmlHttp.status == 200) {
// For XML formatted response

 var message = xmlHttp.responseXML.getElementsByTagName(“name”)[0];
 results = message.childNodes[0].nodeValue.split(“,”);
 document.getElementById(‘firstName’).value = results[0];
 document.getElementById(‘lastName’).value = results[1];

Ajax Examples

 Apr-08 Java Jazz Up 19

}
}

}

function getHTTPRequestObject() {
var xmlhttp;
if (window.XMLHttpRequest) {

xmlhttp = new XMLHttpRequest();
} else if (window.ActiveXObject) {

xmlhttp = new ActiveXObject(“Microsoft.XMLHTTP”);
}
return xmlhttp;

}
</script>

</head>
<body>
<form>
 <p>Enter User Number:
 <input size=”10" name=”User No” id=”userNo” type=”text” onblur=”showFirstLastName();”></
p>
 First Name:
 <input size=”10" name=”First Name” id=”firstName” type=”text”>
 Last Name:
 <input size=”10" name=”Last Name” id=”lastName” type=”text”></form>
</body>
</html>

The input text field for user number has “onblur” attribute, which is set to the JavaScript function
“showFirstLastName ()”. This method is called every time user looses focus from the component. To
show the first and last name there are two more input components of id “firstName” and “lastName”
which will be updated after getting the records corresponding to the particular user using Ajax.

“showFirstLastName ()” first tries to get HTTP request object maintaining the browser compatibility.
In this example, this object is stored in the variable named “xmlHttp”. Read how to get HTTP
request on page 12

Next step is to determine which method should be invoked after getting the response from the
server. In this example, the method “updatepage()” is assigned for this purpose. Now the request
for the JSP page “user.jsp” is forwarded to the server along with user number as parameter
user.jsp

<%
String userNumber = request.getParameter(“userNo”);
if(userNumber != null) {

response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”, “no-cache”);

 // For XML formatted message
if(userNumber.equals(“1”)){

response.getWriter().write(“<name>Deepak,Kumar</name>”);
}

Ajax Examples

20 Java Jazz Up Apr-08

else if(userNumber.equals(“2”)){
response.getWriter().write(“<name>Ravi,Kant</name>”);

}
else{

response.getWriter().write(“<name>,</name>”);
}

} else {
//set Status code 204 (SC_NO_CONTENT) indicating that the request succeeded but no new

information to return.
response.setStatus(HttpServletResponse.SC_NO_CONTENT);

}
%>

The server executes the JSP code, which sends first and last name in xml format. First and last
names are separated with comma and are enclosed within <name> element. After getting the
response, method “updatepage()” is called to manipulate the returned data.

if (xmlHttp.readyState == 4) {
 if (xmlHttp.status == 200) {
 // For XML formatted response
 var message = xmlHttp.responseXML.getElementsByTagName(“name”)[0];
 results = message.childNodes[0].nodeValue.split(“,”);
 document.getElementById(‘firstName’).value = results[0];
 document.getElementById(‘lastName’).value = results[1];

}
}

The function first checks if everything is fine. To get the xml response, responseXML property of
the xmlHttp object is used. Get the nodes values of xml response and split it with comma. Now
splitted values are set to the input components of id “firstName” and “lastName”. First name and
last names of the user are updated and so displayed on the page.

3. Checking User Name Availability in database
This example checks the user name availability using Ajax. If user name does not exist then it
congratulates the user otherwise it warns the user to choose any other name.

AjaxUserNameAvailability.html

Ajax Examples

 Apr-08 Java Jazz Up 21

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
 <head>
 <title>AJAX and Servlet</title>

<script language=”javascript”>
var xmlHttp;
function checkUserExist() {

var username = document.getElementById(“username”).value;
var url = “/Ajax/AJAXCheckUserServlet?username=” + username;
if(window.XMLHttpRequest){

xmlHttp = new XMLHttpRequest();
}
else if(window.ActiveXObject){

xmlHttp = new ActiveXObject(“Microsoft.XMLHTTP”);
}

xmlHttp.open(“Get”,url,true);
xmlHttp.onreadystatechange = callback;
xmlHttp.send(null);

}

function callback() {
if(xmlHttp.readyState==4){

if(xmlHttp.status==200) {
document.getElementById(‘text’).innerHTML = “
”+xmlHttp.responseText+”</

b>”;
}

}
}

function focusIn(){
document.getElementById(“username”).focus();

}
</script>

 </head>

<body onload=”focusIn();”>
<form>

User Name <input type=”text” id=”username” name=”username” />
<input type=”button” value=”Check User Name Availability” onClick=”checkUserExist()”/>
<div id=” text” ></div>

</form>

</body>
</html>

Traditionally, when the user registers itself to create the account with the application, there may be
many fields to be entered in addition to the user name. Now the whole data is submitted to the
server. If the user name with the same name exists already then application sends back the same
page again to let the user choose any other user name.

Ajax Examples

22 Java Jazz Up Apr-08

With the use of Ajax, transferring of large amount of data to the server can be minimized by
sending only user name to the server where user name existence can be checked.

In the above code, there is a button component with label “Check User Name Availability”. It has
“onClick” attribute which is set to the JavaScript function “checkUserExist()”. This method is
called every time user clicks the button component.
div area of id “text” is used to show the result of the response from the server using Ajax.

“checkUserExist()” first tries to get HTTP request object maintaining the browser compatibility. In
this example, this object is stored in the variable named “xmlHttp”. Read how to get Http request
object on page 12

Next step is to determine which method should be invoked after getting the response from the
server. In this example, the method “callback()” is assigned for this purpose. Now the request for
the servlet “AJAXCheckUserServlet” is forwarded to the server along with user name as parameter.

AJAXCheckUserServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;
import java.sql.*;

public class AJAXCheckUserServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

String username = request.getParameter(“username”);
boolean isExist = check(username);

response.setContentType(“text/html”);
response.setHeader(“Cache-Control”, “no-cache”);

if(isExist){
response.getWriter().write(“User Name exists. Please select other name.”);

}
else{

response.getWriter().write(“Congratulations....User Name is available.”);
}

}

public boolean check(String username) {
Connection con = null;
String url = “jdbc:mysql://192.168.10.59:3306/”;
String db = “javajazzup”;
String driver = “com.mysql.jdbc.Driver”;
String user = “root”;
String pass = “root”;
boolean isExist= false;
try{
 Class.forName(driver).newInstance();

Ajax Examples

 Apr-08 Java Jazz Up 23

 con = DriverManager.getConnection(url+db, user, pass);
 try{

Statement st = con.createStatement();
ResultSet res = st.executeQuery(“SELECT user_name FROM users”);

while (res.next()) {
 String un = res.getString(“user_name”);
 if(username.equals(un)){

 con.close();
 isExist = true;
 break;

 }
}
con.close();

 }
 catch (SQLException s){

System.out.println(“SQL code does not execute.”);
 }
}
catch (Exception e){
 e.printStackTrace();
}
return isExist;

 }

}

This servlet finds the username parameter and checks if this username is available in the database.
If it exists then sends “User Name exists. Please select other name.” otherwise
“Congratulations....User Name is available.” to the user. After getting the response from the
server JavaScript function “callback()” is called to handle the response data.

if(xmlHttp.readyState==4){
 if(xmlHttp.status==200) {
 document.getElementById(‘text’).innerHTML =
 “
”+xmlHttp.responseText+””;
 }
}

The function first checks if everything is fine. To get the text response, responseText property of
the xmlHttp object is used. Now the html div component of id “text” is set to the response text.

4. Show User Details:

This Ajax example shows how to show user details like first and last name of the user without
refreshing the current page. When the user changes user selection, its first and last names are
displayed on the page. JavaScript is used to extract the XML data of the response.

Ajax Examples

24 Java Jazz Up Apr-08

AjaxXml.html

<html>
<head><title>Ajax and Servlet Using XML</title>
<script language=”javascript”>

var xmlHttp;
function showUser(username) {

var url = “/Ajax/AJAXUserInfoServlet?username=” + username;
if(window.XMLHttpRequest){

xmlHttp = new XMLHttpRequest();
}
else if(window.ActiveXObject){

xmlHttp = new ActiveXObject(“Microsoft.XMLHTTP”);
}

xmlHttp.open(“Get”,url,true);
xmlHttp.onreadystatechange = callback;
xmlHttp.send(null);

}
function callback() {

if(xmlHttp.readyState==4){
if(xmlHttp.status==200) {

xmlDoc=xmlHttp.responseXML;
document.getElementById(“firstname”).innerHTML=

xmlDoc.getElementsByTagName(“first_name”)[0].childNodes[0].nodeValue;
document.getElementById(“lastname”).innerHTML=

xmlDoc.getElementsByTagName(“last_name”)[0].childNodes[0].nodeValue;

}
}

}
</script>
</head>

<body>
<form>
Select a User:
<select name=”users” onchange=”showUser(this.value)”>

Ajax Examples

 Apr-08 Java Jazz Up 25

<option value=”deepak1">deepak1</option>
<option value=”deepak2">deepak2</option>
</select>
</form>

<h3>

</h3>

</body>
</html>

The combo box, which is used to select one option, has “onchange” attribute, which is set to the
JavaScript function “showUser ()”. This method is called every time user changes the user selection.
To show the user details two components of id “firstname” and “lastname” is used which will be
updated after getting the records corresponding to the particular user using Ajax.

“showUser ()” first tries to get HTTP request object maintaining the browser compatibility. In this
example, this object is stored in the variable named “xmlHttp”. Read how to get Http request
object on page 12

Next step is to determine which method should be invoked after getting the response from the
server. In this example, the method “callback ()” is assigned for this purpose. Now the request for
servlet “AJAXUserInfoServlet” is forwarded to the server along with user number as parameter.

AJAXUserInfoServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;
import java.sql.*;

 public class AJAXUserInfoServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

String username = request.getParameter(“username”);
response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”, “no-cache”);

sendUserFirstLastName(username,response);
}

public void sendUserFirstLastName(String username,HttpServletResponse response) {
Connection con = null;
String url = “jdbc:mysql://192.168.10.59:3306/”;
String db = “javajazzup”;
String driver = “com.mysql.jdbc.Driver”;
String user = “root”;

Ajax Examples

26 Java Jazz Up Apr-08

String pass = “root”;

try{
 Class.forName(driver).newInstance();
 con = DriverManager.getConnection(url+db, user, pass);
 try{

Statement st = con.createStatement();
ResultSet res = st.executeQuery(“SELECT * FROM users where

user_name=’”+username+”’”);
StringBuffer responseXML = new StringBuffer();
responseXML.append(“<?xml version=\”1.0\” encoding=\”ISO-8859-1\”?>”);
responseXML.append(“<user>”);
while (res.next()) {
 String un = res.getString(“user_name”);
 String fn = res.getString(“first_name”);
 String ln = res.getString(“last_name”);

 responseXML.append(“<user_name>”+un+”</user_name>”);
 responseXML.append(“<first_name>”+fn+”</first_name>”);
 responseXML.append(“<last_name>”+ln+”</last_name>”);

}
responseXML.append(“</user>”);
response.getWriter().write(responseXML.toString());
con.close();

 }
 catch (SQLException s){

System.out.println(“SQL code does not execute.”);
 }
}
catch (Exception e){
 e.printStackTrace();
}

 }

}

This servlet sends the response in XML format. Now after getting the response back the JavaScript
function “callback ()” is called to work on server response data.

if(xmlHttp.readyState==4){
 if(xmlHttp.status==200) {
 xmlDoc=xmlHttp.responseXML;

document.getElementById(“firstname”).innerHTML=
xmlDoc.getElementsByTagName(“first_name”)[0].childNodes[0].nodeValue;

document.getElementById(“lastname”).innerHTML=
xmlDoc.getElementsByTagName(“last_name”)[0].childNodes[0].nodeValue;
 }
}

Ajax Examples

 Apr-08 Java Jazz Up 27

The function first checks if everything is fine. To get the xml response, responseXML property of
the xmlHttp object is used. Get the nodes values of xml response. These values are set to the
components of id “firstname” and “lastname”. First name and last names of the user are updated
and so displayed on the page.

5. Display Number in Words

This example displays a number in words. For example, putting number “1” is displayed as word
“One”. This example converts numbers ranging from 0 to 9. This conversion is displayed using
Ajax, which does not refresh the page at all but only displays only the equivalent converted string
for the number.

AjaxNumberToWord.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
 <head>
 <title>AJAX and Servlet</title>
 <script language=”javascript”>

var req;
function convertToString() {

var num = document.getElementById(“num”);
var url = “/Ajax/AJAXResponseServlet?num=” + escape(num.value);
if(window.XMLHttpRequest){

req = new XMLHttpRequest();
}
else if(window.ActiveXObject){

req = new ActiveXObject(“Microsoft.XMLHTTP”);
}

req.open(“Get”,url,true);
req.onreadystatechange = callback;
req.send(null);

}

function callback() {
if(req.readyState==4){

if(req.status==200) {

Ajax Examples

28 Java Jazz Up Apr-08

var strNum = document.getElementById(“numstring”);
strNum.value = req.responseText;

}
}

}

function clear(){
var num = document.getElementById(“num”);
num.value = “”;

}

function focusIn(){
document.getElementById(“num”).focus();

}
</script>

 </head>
<body onload=”focusIn();”>

Enter the Number here: <input type=”text” id=”num” name=”num”
onkeyup=”convertToString();”>

Equivalent String: <input type=”text” size=”20" readonly id=”numstring”>

</body>
</html>

The above html page has input text field of id “num” with “onkeyup” attribute that is set to the
JavaScript function “convertToString()”. This method is called each time the user release the key
up.

“convertToString ()” first tries to get HTTP request object maintaining the browser compatibility.
In this example, this object is stored in the variable named “xmlHttp”. Read how to get Http
request object on page 12

Next step is to determine which method should be invoked after getting the response from the
server. In this example, the method “callback ()” is assigned for this purpose. Now the request for
servlet “AJAXResponseServlet” is forwarded to the server along with number as parameter.

AJAXResponseServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;

public class AJAXResponseServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

String number = request.getParameter(“num”);
String strRepr = null;

Ajax Examples

 Apr-08 Java Jazz Up 29

if(!(number.trim().equals(“”))){
switch(Integer.parseInt(number)){

case 0:
strRepr = “Zero”;

break;
case 1:

strRepr = “One”;
break;
case 2:

strRepr = “Two”;
break;
case 3:

strRepr = “Three”;
break;
case 4:

strRepr = “Four”;
break;
case 5:

strRepr = “Five”;
break;
case 6:

strRepr = “Six”;
break;
case 7:

strRepr = “Seven”;
break;
case 8:

strRepr = “Eight”;
break;
case 9:

strRepr = “Nine”;
break;
default:

strRepr = “Sorry, no conversion available for the number “+number+”.”;
}

//Set up the response
response.setContentType(“text/html”);
response.setHeader(“Cache-Control”, “no-cache”);
response.getWriter().write(strRepr);
}
else{

response.setContentType(“text/html”);
response.setHeader(“Cache-Control”, “no-cache”);
response.getWriter().write(“?”);

}
}

}

This servlet sends the response to the client. Now after getting the response back the JavaScript
function “callback ()” is called to work on server response data.

Ajax Examples

30 Java Jazz Up Apr-08

if(req.readyState==4){
 if(req.status==200) {
 var strNum = document.getElementById(“numstring”);
 strNum.value = req.responseText;
 }
}

The function first checks if everything is fine. To get the text response, responseText property of
the xmlHttp object is used. This value is set to the components of id “numstring”. This updated
component is displayed on the page.

6. Ajax Conversion:

This example converts a number into Binary, Octal, Decimal, Hexadecimal formats using Ajax without
refreshing the whole page.

AJAXConverterUsingXML.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
 <head>
 <title>AJAX Number Converter</title>
 <script language=”javascript”>

var request;
function convert(){

var number = document.getElementById(“number”);
var url = “/ajaxapp/AjaxNumberConverterServlet?number=” + number.value;
if(window.XMLHttpRequest){

Ajax Examples

 Apr-08 Java Jazz Up 31

request = new XMLHttpRequest();
} else{

request = new ActiveXObject(“Microsoft.XMLHTTP”);
}
request.open(“Get”,url,true);
request.onreadystatechange = handleResponse;
request.send(null);

}

function handleResponse(){
if(request.readyState == 4){

if(request.status == 200){
if(window.XMLHttpRequest){

nonMSPopulate();
} else{

msPopulate();
}

}
}

}

function nonMSPopulate(){

var response = request.responseText;

var parser = new DOMParser();
var dom = parser.parseFromString(response,”text/xml”);

binVal = dom.getElementsByTagName(“binary”);
var binary = document.getElementById(“binary”);
binary.value = binVal[0].childNodes[0].nodeValue;

octVal = dom.getElementsByTagName(“octal”);
var octal = document.getElementById(“octal”);
octal.value = octVal[0].childNodes[0].nodeValue;

decVal = dom.getElementsByTagName(“decimal”);
var decimal = document.getElementById(“decimal”);
decimal.value = decVal[0].childNodes[0].nodeValue;

hexVal = dom.getElementsByTagName(“hexadecimal”);
var hexadecimal = document.getElementById(“hexadecimal”);
hexadecimal.value = hexVal[0].childNodes[0].nodeValue;

}

function msPopulate(){

var response = request.responseText;

var xmlDoc = new ActiveXObject(“Microsoft.XMLDOM”);
xmlDoc.async = “false”;

Ajax Examples

32 Java Jazz Up Apr-08

xmlDoc.loadXML(response);

bin = xmlDoc.getElementsByTagName(‘binary’);
var binary = document.getElementById(‘binary’);
binary.value = bin[0].firstChild.data;

oct = xmlDoc.getElementsByTagName(‘octal’);
var octal = document.getElementById(‘octal’);
octal.value = oct[0].firstChild.data;

dec = xmlDoc.getElementsByTagName(‘decimal’);
var decimal = document.getElementById(‘decimal’);
decimal.value = dec[0].firstChild.data;

hex = xmlDoc.getElementsByTagName(‘hexadecimal’);
var hexadecimal = document.getElementById(‘hexadecimal’);
hexadecimal.value = hex[0].firstChild.data;

}

function focusIn(){
document.getElementById(“number”).focus;

}

 </script>
 </head>

 <body onload=”focusIn();”>
 <h1>AJAX Conversion</h1>

 <table>
<tr>

<td>
Enter Number here: <input type=”text” id=”number” name=”number”

maxlength=”2" size=”2" onkeyup=”convert();”>
</td>

</tr>
 </table>

 <table border=”1">
<tr>

<td align=”center” colspan=”5">
Converted Values

</td>
</tr>
<tr>

<td align=”center”>Binary</td>
<td align=”center”>Octal</td>
<td align=”center”>Decimal</td>
<td align=”center”>Hexadecimal</td>

</tr>
<tr>

Ajax Examples

 Apr-08 Java Jazz Up 33

<td align=”center”>
<input type=”text” readonly id=”binary”>

</td>
<td align=”center”>

<input type=”text” readonly id=”octal”>
</td>
<td align=”center”>

<input type=”text” readonly id=”decimal”>
</td>
<td align=”center”>

<input type=”text” readonly id=”hexadecimal”>
</td>

</tr>
 </table>

 </body>
</html>

The above html page has input text field of id “number” with “onkeyup” attribute that is set to the
JavaScript function “convert ()”. This method is called each time the user release the key up.

“convert ()” first tries to get HTTP request object maintaining the browser compatibility. In this
example, this object is stored in the variable named “xmlHttp”. Read how to get Http request
object on page 12

Next step is to determine which method should be invoked after getting the response from the
server. In this example, the method “handleResponse ()” is assigned for this purpose. Now the
request for servlet “AjaxNumberConverterServlet” is forwarded to the server along with number
as parameter.

AjaxNumberConverterServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;

public class AjaxNumberConverterServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

String strEnteredKey = request.getParameter(“number”);
StringBuffer responseXML = null;

if(strEnteredKey!=””){
int num = Integer.parseInt(strEnteredKey);
responseXML = new StringBuffer(“\r\n<converted-values>”);
responseXML.append(“\r\n<binary>”+Integer.toBinaryString(num)+”</binary>”);
responseXML.append(“\r\n<octal>”+Integer.toString(num,8)+”</octal>”);
responseXML.append(“\r\n<decimal>”+num+”</decimal>”);
responseXML.append(“\r\n<hexadecimal>”+Integer.toString(num,16)+”</hexadecimal>”);

Ajax Examples

34 Java Jazz Up Apr-08

responseXML.append(“</converted-values>”);
System.out.println(“\n”+responseXML.toString());
response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”, “no-cache”);
response.getWriter().write(responseXML.toString());

}
else{

responseXML = new StringBuffer(“\r\n<converted-values>”);
responseXML.append(“\r\n<binary>?</binary>”);
responseXML.append(“\r\n<octal>?</octal>”);
responseXML.append(“\r\n<decimal>?</decimal>”);
responseXML.append(“\r\n<hexadecimal>?</hexadecimal>”);
responseXML.append(“</converted-values>”);
System.out.println(“\n”+responseXML.toString());
response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”, “no-cache”);
response.getWriter().write(responseXML.toString());

}
}

}

The server executes the servlet code, which sends the data in xml format. After getting the
response, method “handleResponse ()” is called to manipulate the returned data.

if(request.readyState == 4){
 if(request.status == 200){
 if(window.XMLHttpRequest){
 nonMSPopulate();
 } else{

msPopulate();
 }

}
}

This function first checks if everything is fine. The above code checks if it is Microsoft’s browser and
call msPopulate() method otherwise nonMSPopulate() method is called. This is done because
Microsoft’s XML parser id different than others.

All browsers have built-in XML parser to read and manipulate XML. It reads XML in memory and
converts into XML DOM objects. Now these objects can be accessed with JavaScript.

The following JavaScript fragment loads the response data into the parser:

For Non-Microsoft browsers:

var parser = new DOMParser();
var dom = parser.parseFromString(response,”text/xml”);

For Microsoft browser:

var xmlDoc = new ActiveXObject(“Microsoft.XMLDOM”);

Ajax Examples

 Apr-08 Java Jazz Up 35

xmlDoc.async = “false”;
xmlDoc.loadXML(response);

Extract values from xml data and set to the appropriate html component. These values will be
visible on the page.

7. Ajax Search:
This example searches the user keyword in the database and shows the matching keywords on
the page.

AjaxSearch.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
 <head>
 <title>AJAX Search</title>
 <style type=”text/css”>

.normal {
background-color: #FFFFFF;
padding: 2px 6px 2px 6px;

}
.over {

background-color: #3366CC;
padding: 2px 6px 2px 6px;

}
div#result {
 display: none;

Ajax Examples

36 Java Jazz Up Apr-08

 border:1px solid #000000;
}

</style>
<script language=”javascript”>

var xmlHttp;
function searchText() {

var search = document.getElementById(“search”).value;
var url = “/Ajax/AJAXSearchServlet?search=” + search;

if(window.XMLHttpRequest){
xmlHttp = new XMLHttpRequest();

}
else if(window.ActiveXObject){

xmlHttp = new ActiveXObject(“Microsoft.XMLHTTP”);
}

xmlHttp.open(“Get”,url,true);
xmlHttp.onreadystatechange = callback;
xmlHttp.send(null);

}

function callback() {
if(xmlHttp.readyState==4){

if(xmlHttp.status==200) {

var result = document.getElementById(‘result’);
result.innerHTML = ‘’;
var respText = xmlHttp.responseText;
if((respText.length)!=0){

show_div(‘result’);
show_div(‘close’);

var str = xmlHttp.responseText.split(“\n”);
var items;
for(i=0; i < str.length - 1; i++) {

items = ‘<div onmouseover=”javascript:overText(this);” ‘;
items += ‘onmouseout=”javascript:outText(this);” ‘;
items += ‘onclick=”javascript:setText(this.innerHTML);” ‘;
items += ‘class=”normal”>’ + str[i] + ‘</div>’;
result.innerHTML += items;

}
}
else
{

hide_divs();
}

}
}

}

Ajax Examples

 Apr-08 Java Jazz Up 37

function focusIn(){
document.getElementById(“search”).focus();

}

function overText(div_value) {
div_value.className = ‘over’;

}

function outText(div_value) {
div_value.className = ‘normal’;

}

function setText(value) {
document.getElementById(‘search’).value = value;
hide_divs();
document.getElementById(‘result’).innerHTML = ‘’;

}

function show_div(div_id) {
document.getElementById(div_id).style.display = ‘block’;

}

function hide_divs() {
document.getElementById(‘result’).style.display = ‘none’;
document.getElementById(‘close’).style.display = ‘none’;

}
</script>

 </head>

<body onload=”focusIn();”>
<h2>Ajax Search Example</h2>

<form>
Enter Search Keyword
<table border = “0”>

<tr>
<td><input type=”text” id=”search” name=”search” onkeyup=”searchText()”

autocomplete=”off” /></td>
</tr>
<tr>

<td><div id=”result”></div></td>
</tr>
<tr>

<td><div id=”close” align=”right” style=”display: none;”><a href=”” onclick=”hide_divs();
return false”>close</div></td>

</tr>
</table>

</form>
</body>

</html>

Ajax Examples

38 Java Jazz Up Apr-08

The above html page has input text field of id “search” with “onkeyup” attribute that is set to the
JavaScript function “searchText ()”. This method is called each time the user releases the key up.
This input text component also has an attribute “autocomplete” which is set to the value “off”.
This attribute is used to turn on/off the default behavior of text field to show texts entered before.
But here we have to show matched data from the database. So it is necessary to set this attribute
to ‘off’.

“searchText ()” first tries to get HTTP request object maintaining the browser compatibility. In this
example, this object is stored in the variable named “xmlHttp”. Read how to get Http request
object on page 12

Next step is to determine which method should be invoked after getting the response from the
server. In this example, the method “callback ()” is assigned for this purpose. Now the request for
servlet “AJAXSearchServlet” is forwarded to the server along with search keyword as parameter.

AJAXSearchServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;
import java.sql.*;

public class AJAXSearchServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

String search = request.getParameter(“search”);

response.setContentType(“text/html”);
response.setHeader(“Cache-Control”, “no-cache”);
if(!((search.trim()).equals(“”))){

String searchString = getSearchResult(search);
System.out.println(searchString);
response.getWriter().write(searchString);

}
else{

System.out.println(“Length of string”+(“”.length()));
response.getWriter().write(“”);

}
}

public String getSearchResult(String search) {
Connection con = null;
String url = “jdbc:mysql://192.168.10.59:3306/”;
String db = “javajazzup”;
String driver = “com.mysql.jdbc.Driver”;
String user = “root”;
String pass = “root”;
String finalSearch=””;
try{

Ajax Examples

 Apr-08 Java Jazz Up 39

 Class.forName(driver).newInstance();
 con = DriverManager.getConnection(url+db, user, pass);
 try{

Statement st = con.createStatement();
ResultSet res = st.executeQuery(“SELECT distinct(keyword_name) FROM keywords WHERE

keyword_name like(‘“+search+”%’) ORDER BY keyword_name”);

while (res.next()) {
 String un = res.getString(“keyword_name”);
 finalSearch+= un+”\n”;
}
con.close();

 }
 catch (SQLException s){

System.out.println(“SQL code does not execute.”);
 }
}
catch (Exception e){
 e.printStackTrace();
}
return finalSearch;

 }

}

This servlet sends the matched keywords separated with “\n”. After receiving the response from
the server the JavaScript function “callback()” is called.

if(xmlHttp.readyState==4){
if(xmlHttp.status==200) {

var result = document.getElementById(‘result’);
result.innerHTML = ‘’;
var respText = xmlHttp.responseText;
if((respText.length)!=0){

show_div(‘result’);
show_div(‘close’);
var str = xmlHttp.responseText.split(“\n”);
var items;
for(i=0; i < str.length - 1; i++) {

items = ‘<div onmouseover=”javascript:overText(this);” ‘;
items += ‘onmouseout=”javascript:outText(this);” ‘;
items += ‘onclick=”javascript:setText(this.innerHTML);” ‘;
items += ‘class=”normal”>’ + str[i] + ‘</div>’;
result.innerHTML += items;

}
}
else{

 hide_divs();
}

}
}

Ajax Examples

40 Java Jazz Up Apr-08

The function first checks if everything is fine. To get the text response, responseText property of
the xmlHttp object is used. Split the response with “\n” and put each separated value in a div
component. Now all div components are attached with the div component of id “result”. This
updated component is displayed on the page. Different JavaScript functions are used to show and
hide components on different events.

Ajax Examples

 Apr-08 Java Jazz Up 41

1. Hello Ajax World Example

The objective of this example is to display the content of "data.xml" file when the button on the
page is clicked. Clicking the button doesn't refresh the page. The above page contains button
component containing "onclick" attribute which is set to JavaScript function "replace()". This function
is called each time this button is clicked. The “div” component of “message” id is used to display the
time when Ajax response is completed.

helloworld.html

<Html>
<Head>
<Title>Simple Ajax and XML Example</title>
<script type="text/javascript">
function replace(){
var xmlHttp;
if (window.XMLHttpRequest){ // Mozilla, Safari, ...
var xmlHttp = new XMLHttpRequest();
}
else if (window.ActiveXObject) { // IE
var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xmlHttp.onreadystatechange=function() {
if(xmlHttp.readyState == 4) {
process();
}
}
xmlHttp.open("GET", "data.xml");
xmlHttp.send(null);
}

function process(){
var message = xmlHttp.responseXML.getElementsByTagName("display-name")[0];
var results = message.childNodes[0].nodeValue;
document.getElementById('message').innerHTML=results;
}
</script>
</head>
<body>
<center>
<table border="0" cellpadding="0" cellspacing="1" width="464" bgcolor="#ccffcc">
<tr>
<td width="525" colspan="2" >
<p align="center">Hello Ajax World - Example</td>
</tr>
<tr>
<td width="289" > Click to see Message!</td>
</tr>
<tr>

Ajax Examples

42 Java Jazz Up Apr-08

<td><input type="button" onclick="javascript:replace()" value="Get Message!"></td>
</tr>
<tr>
<td><div id="message"></div></td>
</tr>
</table>
</center>
</body>
</html>
</html>

JavaScript code first tries to get HTTP request object maintaining the browser compatibility. In this
example, this object is stored in the variable named “xmlHttp”. replace() method extracts values
from xml file and set it to the div component of "message" id.2. data.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app>
<display-name>Hello Ajax World!</display-name>
</web-app>

Now save both the file as helloworld.html and data.xml and run it on your localhost server it will look
like same as given image1

Now click on "Get Message!" button and you will see the result same as given in image2

This was the basic "Hello Ajax World!" example, now run some more examples given in this issue
for better understanding.

Ajax Examples

 Apr-08 Java Jazz Up 43

2. Show Time using Ajax and php

The objective of this example is to show current server time when the button on the page is clicked.
Clicking the button doesn't refresh the page. The above page contains button component containing
"onclick" attribute which is set to JavaScript function "showCurrentTime()". This function is called
each time this button is clicked. The “div” component of “date” id is used to display the time when
Ajax response is completed.showtime.html

<html>
<head>

<title>Ajax Example</title>

<script language="Javascript">

function postRequest(strURL) {

var xmlHttp;

if (window.XMLHttpRequest) { // Mozilla, Safari, ...

var xmlHttp = new XMLHttpRequest();

} else if (window.ActiveXObject) { // IE

var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

}

xmlHttp.open('POST', strURL, true);

xmlHttp.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');

xmlHttp.onreadystatechange = function() {

if (xmlHttp.readyState == 4) {

updatepage(xmlHttp.responseText);

}

}

xmlHttp.send(strURL);

}

function updatepage(responsetext){

document.getElementById("date").innerHTML =

Ajax Examples

44 Java Jazz Up Apr-08

"" + responsetext + "";

}

function showCurrentTime(){

var rnd = Math.random();

var url="time.php?id="+rnd;

postRequest(url);

}

</script>

</head>

<body>
<center>
<table border="0" cellpadding="0" cellspacing="1" width="464" bgcolor="#ccffcc">
<tr>
<td width="525" colspan="2" >
<p align="center">Show current time example in Ajax</td>
</tr>
<tr>
<td width="289" > Click to see Current Date and Time!</td>
<td width="236">
<form name="f1">

<p align="center">
 <input value="Show" type="button" onclick='JavaScript:showCurrentTime()'
name="Show">

</p>
<tr><td>
<div id="date"></div>

</td></tr>
</form>

</tr>

</table>
</center>

</body>

</html>

Ajax Examples

 Apr-08 Java Jazz Up 45

time.php
<?
print date("M dS Y l H:i:s");
?>

JavaScript code first tries to get HTTP request object maintaining the browser compatibility. In this
example, this object is stored in the variable named “xmlHttp”. The request for "time.php" is sent
to the server which calculates the current date and time. Now JavaScript method which is set to
"onreadystatechange" property is called on getting the response back from the server. This method
checks the status of the response and get the server response from responseText property of the
xmlHttp object. Now the html div component of "date" id is populated with the server response
text. Now date and time can be seen on the page.Output:

Click on Show button to get time!

Ajax Examples

46 Java Jazz Up Apr-08

Ajax Frameworks Types
Ajax Frameworks Types

Client Side vs. Server Side Frameworks

There are two types of Ajax based frameworks used in the web programming nowadays: Server-
side Framework and Client-side Framework. Server-side framework is installed inside the server
while Client-side framework entertains the user’s browser to access the web. Similarly, the code
executed on the Web server is considered as Server-side code while if executed on the user’s
browser is known as Client-side Framework.

Internet is an extremely wide area and because of this both the server-side and client –side
programmers may not be in the contact and performs their work separately. Both the server-side
and client-side functions differently and the code used in the frameworks also varies. The code of
both the frameworks has its own pros and cons that suite to different sorts of developers.

Now the question arises, what is the Server-side framework and what is Client-side? In this article,
you will get the answer of both these queries. You will also learn about what are the advantages and
disadvantages of both these frameworks.

Server Side Framework

The framework that is installed inside the server is known as Server-side framework. The coding of
server-side framework is actually not created in JavaScript but it is the same language that API
provided for server-side framework. So, it is not mandatory for the developers to be skilled in
JavaScript for server-side framework programming. Nearby all the frameworks in server-side accepts
the coding of developers and automatically translates it into Ajax when user accesses the website.

Server-side framework can also be used for installing the specific functions from the library to
translate and accessed effectively. The server-side framework exactly provides the desired functions
and the library needed for developer to render the specific buttons and information in Ajax based
website. The developers have to only customize the code during creating the program. Moreover,
the server-side framework responds better because it handles a large number of user communications
without intervention of server.

Google Web Toolkit (GWT) might be an excellent example of server-side framework that is used as
a normal Java Swing kind of programming on the server side in web pages using the GWT API. The
other server side frameworks are: Yahoo, Toolkit and DWR.

Server-side framework is basically used for server server-side programming that covers password
protection, browser customization, form processing and building and displaying pages created
from database.

Pros and Cons of Server Side Frameworks

There is no need for the developers to learn the extra language as server-side coding can be
written in the existing language in which the server-side programmer is efficient.

Client Side Framework

As opposing the server-side, Client-side framework is accessed and executes within the user’s
browsers. For creating Ajax based client-side framework, developers must be efficient enough in

 Apr-08 Java Jazz Up 47

JavaScript as well as XML. Because Ajax-based client side website is fully depended upon Ajax and
it also needs to a wide range of coding for different browsers.

The different uses of framework for different browsers make the Ajax client-side programming very
complex. The frameworks written for Mozilla cannot be executed in Internet Explorer if
XMLHttpRequest has not been defined and implemented for the Internet explorer too.

The Request XMLHttpRequest performs like a bridge between the server and the client. The developers
have to generate different coding for different platforms to perform it successfully. That’s why the
developers must have the knowledge about which browser has been used by his client; otherwise
the developer has to develop several customize client-side framework for running their own platforms.

Through Client-side framework, users can execute any technology that supports user’s browser. In
Client-side framework, users can modify several features besides codes without sending information
to web server.

In the Client-side framework, user can handle multiple asynchronous request, can detect easily
error handling and exceptions and can mix and match widget facilities to get extra flexibility in the
programming. (Widgets are small interfaces or components that can be integrated with an application
easily through client side framework)

Client-side framework is used in online games, customizing the display without reloading the page
and getting data about the user’s screen or browser. The examples of client-side framework are
Prototype, DOJO Toolkit, Rico, Script.aculo.us and many more.
-
Pros and Cons of Client Side Frameworks

Client-side framework is more flexible than server-side due to multi-handing frameworks, easily
error handling and exceptions while the adding of widgets makes it extra-flexible.

Ajax Frameworks Types

48 Java Jazz Up Apr-08

Ajax and XML: Five cool Ajax widgets
First published by IBM developerWorks at http://www.ibm.com/developerWorks. Visit ibm.com/
developerWorks for more tutorials on open standard technologies, IBM products, and more.

Ajax and XML: Five cool Ajax widgets
Use Ajax and XML with new graphic tools to enhance your site

Level: Intermediate

Jack D Herrington (jherr@pobox.com), Senior Software Engineer, Leverage Software Inc.

16 Jan 2007
With the Web 2.0 wave came a whole new emphasis on the user experience. Part of that experience
is the development novel ways to interact with and present information to users. Often, these new
interfaces are called widgets and use Asynchronous JavaScript + XML (Ajax) to communicate with
the server. Discover five widgets that you can use to enhance the interactivity of your site.

The Web 2.0 revolution emphasizes unique and novel ways to interact with customers on your Web
site. A lot of these new, innovative techniques revolve around using graphics and widgets that
communicate with the server to retrieve data for display. In this article, I introduce you to five such
widgets — some open source, some licensed – that communicate with the server through Ajax and
XML:

• carousel: This widget is a rolling image viewer that customers can use to scroll through a list
of items, each portrayed by a small graphic. What you do when a user clicks an item is up to
you. Examples of carousels in the wild include the Flikr site and the iTunes interface from
Apple. This carousel is available at no cost and is based on the popular jQuery JavaScript
framework.

• SWF/Charts: This Adobe Flash-based control reads XML located on the server for its
charting data and styling options, then displays a chart based on the data. The interface is
elegant, and the XML data is so easy to create that it’s a snap to add dynamic graphing to
your page.

• SWF/Gauge: A cousin to SWF/Charts, this Flash widget uses XML located on the server to
build a completely customizable gauge display. The gauge can look like something from an
airplane or a car or something more trendy. The choice is up to you.

• In-place editing: While not strictly a widget, an in-place editing control is an intuitive,
interactive, and lightweight way to get information from users when they have it. In-place
editing functionality comes with the Scriptaculous framework, which sits on top of the
prototype.js library.

• DHTML windows: The DHTML window provides a mechanism for putting a modeless floating
window on top of your page content. Users can move the window around, resize it, or dismiss
it. The content of the window can either be specified by JavaScript code on the page or read

 Apr-08 Java Jazz Up 49

through Ajax from the server. This type of window is ideal for use as an alert mechanism or for
bringing up small forms that don’t deserve an entire page reload.

I start the show off with the SWF/Charts widget, because I think it’s one of the easiest widgets to
deploy. It also provides the biggest return for the effort.

The SWF/Charts widget
It’s hard to argue with the old saying, “A picture is worth a thousand words,” particularly where
graphs are concerned. But graphing on the Web has always been a problem. Most Web frameworks
lack a graphing tool right out of the box, although some include the graphics primitives for building
images. This lack of functionality leaves you stuck building graphs on your own.
Wouldn’t it be great if there were a widget that would just graph XML-encoded data? Turns out,
there is one: SWF/Charts. To start using this widget, I download the SWF file from the site along
with the extra SWF files that the widget uses. Then, I installed the files on my site and added a link
to the SWF widget on the HTML page, as shown in Listing 1.

Listing 1. Chart_page.html

<html><body>

<object
 classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase=”http://download.macromedia.com/pub.../swflash.cab#version=6,0,0,0"
 width=”400" height=”250">
<param name=”movie”
 value=”charts.swf?xml_source=chart_data.xml&library_path=charts_library”>

<embed
 src=”charts.swf?xml_source=chart_data.xml&library_path=charts_library”
 width=”400" height=”250"
 type=”application/x-shockwave-flash”
 pluginspace=”http://www.macromedia.com/go/getflashplayer”>
</embed>
</object>

</body></html>

Charts.swf takes two parameters: the location of its libraries directory and the URL of the XML
data. The XML data format is ridiculously easy. Listing 2 shows a simple example.

Listing 2. Chart_data.xml

<chart>
 <chart_type>bar</chart_type>
 <chart_data>
 <row>
 <null/>
 <string>2005</string>

Ajax and XML: Five cool Ajax widgets

50 Java Jazz Up Apr-08

 <string>2006</string>
 </row>
 <row>
 <string>Projected</string>
 <number>500</number>
 <number>700</number>
 </row>
 <row>
 <string>Actual</string>
 <number>600</number>
 <number>900</number>
 </row>
 </chart_data>
</chart>

This file is primarily the data for the chart, along with some optional visual information. In this case,
I’m specifying the chart type as a bar chart. The site from which I downloaded the SWF file has a lot
more on the options you can set and the types of graphs that are available.

When I browse to the file in my Firefox browser, I see the graph shown in Figure 1.

Figure 1. The Chart Widget in action

As you can see, the default color scheme and the look of the chart is really slick. And the graph
does the right thing of rounding up the axis values nicely. The overall effect is great with little effort
on my part.

Obviously, you could replace the graph_data.xml file with a dynamic Web page: As long as the
returned data is in the correct format, the graph control cares less. This is the case with all the
examples in this article. In fact, you can run all the examples in a Web browser on local files without
using a Web server (such as Apache Tomcat or IBM® WebSphere® Application Server) or Web
programming language (for example, PHP, Microsoft® ASP.NET, Java™ 2 Enterprise Edition [Java
EE]).

The SWF/Gauge widget

Ajax and XML: Five cool Ajax widgets

 Apr-08 Java Jazz Up 51

Another attractive way to present data is as a gauge. Personally, I’m not much on the gauge idea,
because it takes up a lot of space to present just a little information. But gauges are a key feature
of executive dashboards, so the ability to create them quickly is convenient.

But if the Web doesn’t do simple bar charts very well, it certainly doesn’t do circular gauges well.
So, I went back to the same company that created XML/Graph, and wouldn’t you know it? They
also have a solution for gauges: XML/Gauge.

I’ll start with the HTML page that embeds the SWF/Gauge widget, as shown in Listing 3.

Listing 3. Gauge_page.html

<html><body>

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase=”http://download.macromedia.com/.../swflash.cab#version=6,0,0,0"
 width=”110" height=”55">
<param name=movie VALUE=”gauge.swf?xml_source=gauge_data.xml”>
<embed src=”gauge.swf?xml_source=gauge_data.xml”
 width=”110" height=”55" type=”application/x-shockwave-flash”
 pluginspace=”http://www.macromedia.com/go/getflashplayer”>

</embed></object>

</body></html>

That gauge.swf movie takes a single argument: the location of the data. In this case, the location is
gauge_data.xml, which is shown in Listing 4 .

Listing 4. Gauge_data.xml

<gauge>

<circle fill_color=”888888" start=”275" fill_alpha=”100"
 line_color=”555555" line_thickness=”3" line_alpha=”90"
 radius=”50" x=”55" end=”445" y=”55"/>
<circle fill_color=”99bbff” start=”280" fill_alpha=”90"
 line_thickness=”4" line_alpha=”20" radius=”45" x=”55"
 end=”440" y=”55"/>
<circle fill_color=”666666" start=”317" fill_alpha=”100"
 line_color=”333333" line_alpha=”0" radius=”44" x=”55"
 end=”322" y=”55"/>
<circle fill_color=”666666" start=”337" fill_alpha=”100"
 line_color=”333333" line_alpha=”0" radius=”44" x=”55"
 end=”342" y=”55"/>
<circle fill_color=”666666" start=”357" fill_alpha=”100"
 line_color=”333333" line_alpha=”0" radius=”44" x=”55"
 end=”362" y=”55"/>
<circle fill_color=”666666" start=”377" fill_alpha=”100"

Ajax and XML: Five cool Ajax widgets

52 Java Jazz Up Apr-08

 line_color=”333333" line_alpha=”0" radius=”44" x=”55"
 end=”382" y=”55"/>
<circle fill_color=”666666" start=”397" fill_alpha=”100"
 line_color=”333333" line_alpha=”0" radius=”44" x=”55"
 end=”402" y=”55"/>
<circle fill_color=”666666" start=”417" fill_alpha=”100"
 line_color=”333333" line_alpha=”0" radius=”44" x=”55"
 end=”422" y=”55"/>
<circle fill_color=”99bbff” start=”280" fill_alpha=”100"
 radius=”40" x=”55" end=”440" y=”55"/>
<circle fill_color=”FF4400" start=”280" fill_alpha=”100"
 radius=”44" x=”55" end=”310" y=”55"/>
<circle fill_color=”44FF00" start=”50" fill_alpha=”100"
 radius=”44" x=”55" end=”80" y=”55"/>
<circle fill_color=”99bbff” start=”280" fill_alpha=”80"
 radius=”40" x=”55" end=”440" y=”55"/>
<circle fill_color=”333333" start=”270" fill_alpha=”100"
 line_alpha=”0" radius=”20" x=”55" end=”450" y=”55"/>

<rotate start=”280" shake_span=”2" shadow_alpha=”15"
 step=”1" x=”55" span=”0" y=”55" shake_frequency=”20">
 <rect fill_color=”ffff00" fill_alpha=”90" line_alpha=”0"
 height=”40" x=”53" width=”4" y=”13"/>
</rotate>

<circle fill_color=”111111" start=”270" fill_alpha=”100"
 line_thickness=”5" line_alpha=”50" radius=”15" x=”55"
 end=”450" y=”55"/>

</gauge>

As you can see, SWF took a different approach with this widget. Instead of specifying the data for
the gauge (or graph), I actually build the gauge out of graphics primitives such as circles, arcs, and
rectangles.

Honestly, I prefer a set of canned gauges with which I can just supply the data. But this method
works, and it allows me almost infinite room for tweaking — although I would have appreciated a
few more canned examples that I could work from.

Ajax and XML: Five cool Ajax widgets

 Apr-08 Java Jazz Up 53

When I go to the page in my browser, I see the gauge shown in Figure 2.

Figure 2. The Gauge Widget in Action

You might think that with the specification of the graphics primitives, there isn’t a lot to be gained
on this widget. Not so. The primitives also include simple animation techniques so that you can
bounce the needle around as well as sound and the ability to create hot-linking zones that navigate
the browser when the user clicks them. In addition, you can think out of the box with this control,
not just using it for gauges but using its simple graphics primitive language to build any type of
image and simple animation.

In-place editing
Users now expect in-place editing from desktop applications, but this functionality is something
rarely found on the Web, until now. With Web 2.0, interactivity becomes paramount, so techniques
such as in-place editing are also more commonplace.
To implement in-place editing, you can either write it yourself or use one of the JavaScript frameworks
to do the heavy lifting for you. One of the most popular toolkits is the Scriptaculous framework,
which is built on top of the prototype.js library. The Scriptaculous library makes building an in-place
edited control quite easy.

A simple HTML test file for in-place editing is shown in Listing 5.

Listing 5. Inplace.html

<html><head>
<script src=”prototype.js”></script>
<script src=”effects.js”></script>
<script src=”controls.js”></script>
<script src=”scriptaculous.js”></script>
</head><body>
<table width=”100%”>
<tr><th width=”10%”>Name</th>
<td width=”90%”><p id=”name”>Candy bar</p></td>
</tr></table>
<script>
new Ajax.InPlaceEditor(‘name’, ‘submitted.html’);
</script>
</body>
</html>

Ajax and XML: Five cool Ajax widgets

54 Java Jazz Up Apr-08

To start, Inplace.html includes all the necessary JavaScript source files. Then, I put together a imple
table with a paragraph containing the in-place editable data. At the end of the file, I insert a small bit
of script that creates an InPlaceEditor object for the paragraph. That InPlaceEditor constructor
takes as arguments the ID of the paragraph as well as the URL of the page that will handle the
submission after I’m done editing. In this case, that page is submitted.html; but in reality, it would
be an ASP.NET, Java EE, or PHP page or some other dynamic Web technology.

Listing 6 shows the simple submitted.html file.

Listing 6. Submitted.html

<p>Name changed!</p>

Now to test it. I first open my browser to the HTML file. There, I see the original text. As I mouse
over the text, it turns yellow, as shown in Figure 3.

Figure 3. The starting point of in-place editing

This yellow highlighting is a visual indicator to users that they can edit the field by clicking it. So, I
click the field and get the Name field, an ok button, and a cancel link, as shown in Figure 4.

Figure 4. Editing the text after clicking it

I then change the text and click ok, which posts the data to the server (or the submitted.html
page, in this case). The server then returns the HTML page that should replace the original text. In
this case, I send back Name changed! (as shown in Figure 5); in reality, it would probably be the
new value of the data.

Ajax and XML: Five cool Ajax widgets

 Apr-08 Java Jazz Up 55

Figure 5. The new content after clicking ok

Simple interface upgrades like these can make a world of difference in the usability of your application.
Waiting for page loads — especially from slow servers — gives the impression of a clunky, old-style
interface. Using simple tools such as this in-place editor can really spruce up your application with
very little in terms of implementation complexity.

DHTML windows
It’s probably a good thing that browsers make it difficult to build modal windows into Web pages.
But sometimes, small windows can be a good thing. They are handy to display alerts or to bring up
small forms. They’re also a great way to launch annoying ads that cover the content of the page.
Oh, wait: Scrap that last one.
Anyway, as I said, it’s not easy to build windows for Dynamic HTML (DHTML) pages. So I was happy
when I found this extremely robust window package based on the popular Protoype.js library. Not
only was it easy to use, but the interface was skinnable and works well on every browser. Listing 7
shows the window.html page.

Listing 7. Window.html

<html>
<head>
<link href=”default.css” rel=”stylesheet” type=”text/css” />
<script src=”prototype.js”></script>
<script src=”window.js”></script>
</head>
<body>
<script>
var win = new Window(‘myPopup’, {
 title: “Terms and Conditions”,
 top:70, left:100, width:300, height:200,
 resizable: true, url: “terms.html”,
 showEffectOptions: { duration: 3 }
 }
);
win.show();
</script>
</body>
</html>

Ajax and XML: Five cool Ajax widgets

56 Java Jazz Up Apr-08

I first bring the prototype.js and window.js source files into the header. Then, I build the pop object
with the parameters I like, including the size, the location, the title, and the URL of the page from
which the widget should get its content. Loading the content from a page through Ajax is just one
way of getting the contents, though; you can also set them dynamically through JavaScript code or
wrap the window around an existing <div> tag on the page.
In this case, I reference the terms.html file shown in Listing 8.

Listing 8. Terms.html

<html><body bgcolor=”white”>
<h1>Terms and Conditions</h1>
<p>In order to use this site you must comply
with the following conditions...</p>
</body></html>

When I launch the page in my browser, I see the window shown in Figure 6.

Figure 6. The initial window

No, that’s not just two Mac windows on top of each other. That’s a Mac-looking fake DHTML window
inside a real Firefox browser window. But it looks and feels the same anyway.
I can stretch and move the window around, as shown in Figure 7.

Figure 7. The window after moving and resizing it

I looked at several DHTML window libraries, both for this article and for my own work, and I can tell
you with some confidence that this one has the best feel to me. Other window packages had
rendering problems, rendered in segments, or behaved badly when I resized them. This one feels
very much like a real window that’s just trapped inside the browser.

Ajax and XML: Five cool Ajax widgets

 Apr-08 Java Jazz Up 57

The carousel widget
Anyone who has done a significant amount of user interface (UI) work can tell you that screen real
estate is critical. It’s important to squeeze as much data as you can into a given space without it
feeling compressed. So, I was pretty impressed when I first saw a carousel control in Apple iTunes.
A carousel control shows several images in a fixed block of space. To the left and right of the block
of images are left and right arrows. If you click the arrows, the images shift to the left or right and
are replaced with a new set of images. In iTunes, the images were album covers, and there was a
carousel control for each genre.

The space savings are significant: You can put 30 album covers in the space of three and still show
each at a reasonable size. And the control is intuitive. It’s like a simplified scrollbar.
The downside is that carousels aren’t easy to implement, especially because part of the allure is the
animation of the images moving to the left or the right. So I was happy to see an open source
carousel called carousel built on the jQuery JavaScript framework.

I implemented a simple carousel widget on the Web page shown in Listing 9.

Listing 9. Carousel.html

<html>
<head>
<script type=”text/javascript” src=”js/jquery-1.0.3.js”></script>
<script type=”text/javascript” src=”js/jcarousel.js”></script>
<style type=”text/css”>
#mycarousel { display: none; }
.jcarousel-scope { position: relative; width: 255px;
 -moz-border-radius: 10px; background: #D4D0C8;
 border: 1px solid #808080; padding: 20px 45px; }
.jcarousel-list li { width: 81px; height: 81px;
 margin-right: 7px; }
.jcarousel-list li img { border: 1px solid #808080; }
.jcarousel-list li a { display:block; outline: none;
 border: 2px solid #D4D0C8; -moz-outline:none; }
.jcarousel-list li a:hover { border: 2px solid #808080; }
.jcarousel-next { position: absolute; top: 45px;
 right: 5px; cursor: pointer; }
.jcarousel-next-disabled { cursor: default; }
.jcarousel-prev { position: absolute; top: 45px;
 left: 5px; cursor: pointer; }
.jcarousel-prev-disabled { cursor: default; }
.loading { position: absolute; top: 0px;
 right: 0px; display: none; }
</style>
<script type=”text/javascript”>
function loadItemHandler(carousel, start, last, available) {
 if (available) { carousel.loaded(); return; }
 var cr = carousel;
 jQuery.get(“data.xml”, function(data) { appendItemCallback(cr, start, last, data); });
};

function appendItemCallback(carousel, start, last, data) {

Ajax and XML: Five cool Ajax widgets

58 Java Jazz Up Apr-08

 var items = data.match(/(\)/g);

 for (i = start; i <= last; i++) {
 if (items[i - 1] == undefined) break;
 var item = carousel.add(i, getItemHTML(items[i-1]));
 item.each(function() {
 jQuery(“a.thickbox”, this).click(function() {
 var t = this.title || this.name || null;
 var g = this.rel || false;
 TB_show(t,this.href,g);
 this.blur();
 return false;
 });
 });
 }
 carousel.loaded();
};

function getItemHTML(item) {
 var found = item.match(/href=\”(.*?)\”/);
 var url = jQuery.trim(found[1]);
 var title = jQuery.trim(found[1]);
 var url_m = url.replace(/_s.jpg/g, ‘_m.jpg’);
 return ‘<a href=”’ + url_m +

‘“ title=”’ + title +
‘“ class=”thickbox”><img src=”’ + url +
‘“ width=”’ + 75 + ‘“ height=”’ + 75 +
‘“ alt=”’ + title + ‘“ />’;

};

var nextOver = function() {
 jQuery(this).attr(“src”, “img/horizontal-ie7/next-over.gif”); };

var nextOut = function() {
 jQuery(this).attr(“src”, “img/horizontal-ie7/next.gif”); };

var nextDown = function() {
 jQuery(this).attr(“src”, “img/horizontal-ie7/next-down.gif”); };

function nextButtonStateHandler(carousel, button, enabling) {
 if (enabling) {
 jQuery(button).attr(“src”, “img/horizontal-ie7/next.gif”)
 .mouseover(nextOver).mouseout(nextOut).mousedown(nextDown);
 } else {
 jQuery(button).attr(“src”, “img/horizontal-ie7/next-disabled.gif”)
 .unmouseover(nextOver).unmouseout(nextOut).unmousedown(nextDown);
 }
}

var prevOver = function() {
 jQuery(this).attr(“src”, “img/horizontal-ie7/prev-over.gif”); };

Ajax and XML: Five cool Ajax widgets

 Apr-08 Java Jazz Up 59

var prevOut = function() {
 jQuery(this).attr(“src”, “img/horizontal-ie7/prev.gif”); };

var prevDown = function() {
 jQuery(this).attr(“src”, “img/horizontal-ie7/prev-down.gif”); };

function prevButtonStateHandler(carousel, button, enabling) {
 if (enabling) {
 jQuery(button).attr(“src”, “img/horizontal-ie7/prev.gif”)
 .mouseover(prevOver).mouseout(prevOut).mousedown(prevDown);
 } else {
 jQuery(button).attr(“src”, “img/horizontal-ie7/prev-disabled.gif”)
 .unmouseover(prevOver).unmouseout(prevOut).unmousedown(prevDown);
 }
}

jQuery(document).ready(function() {
 jQuery().ajaxStart(function() { jQuery(“.loading”).show(); });
 jQuery().ajaxStop(function() { jQuery(“.loading”).hide(); });
 jQuery(“#mycarousel”).jcarousel({
 itemVisible: 3, itemScroll: 2, wrap: true,
 loadItemHandler: loadItemHandler,
 nextButtonStateHandler: nextButtonStateHandler,
 prevButtonStateHandler: prevButtonStateHandler
 });
});
</script></head><body><div id=”mycarousel”>
<div class=”loading”>
Loading...</div>

</div></body></html>

Yes, there is a lot more to it than in the previous examples. But most of the code is setting up the
graphics and interpreting the Ajax data returned from the server. In fact, most of the code for this
article is based on one of the examples provided with the download. So, I didn’t have to learn much
or read any documentation to use the control.
The data for the carousel is shown in Listing 10.

Listing 10. Data.xml

<images>

</images>

Ajax and XML: Five cool Ajax widgets

60 Java Jazz Up Apr-08

In this case, the file is just in a simple XML format that has an <images> tag with a set of
ags in it that hold the URL for each image. You can use whatever format you like, because the
ontrol is not natively an Ajax widget. I’m writing the code that interprets the XML and creates each
slide element in the carousel. The end result is shown in Figure 8.

Figure 8. The image carousel on the page

I can click the image and go to the page with the image (or to any URL I specify). Or, I can click the
right or left arrow to scroll around the carousel to see more images. The effect is really quite
impressive.

Conclusion
I showed you just a handful of the widgets and tools available on the Web both commercially and at
no cost. Many of the tools I looked at while I researched this article didn’t use Ajax and as such
didn’t fit into the topic. However, they were noteworthy on their own. In particular, I was impressed
by the number of high-quality, open source WYSIWYG editors available for download. I often have
customers frustrated when they have to use HTML in text boxes to get content onto their sites
with bold, italics, links, images, and so on. These editors hide all the HTML and give users an editing
feel that’s similar to a word processing application.

In addition to the WYSIWYG editors, you can find solutions for progress bars, tabbed dialog
boxes, accordion controls, clocks, date pickers, RSS and Outline Processor Markup Language (OPML)
readers — even interactive terminal windows. Certainly, before you build your own DHTML or Flash
controls, you should look at what’s available (often at no cost) on the Internet. With widgets such
as these, you can add a lot of interactivity to your site without a lot of effort.

Ajax and XML: Five cool Ajax widgets

 Apr-08 Java Jazz Up 61

Five common Ajax patterns
First published by IBM developerWorks at http://www.ibm.com/developerWorks. Visit ibm.com/
developerWorks for more tutorials on open standard technologies, IBM products, and more.

Ajax and XML: Five common Ajax patterns
Helpful Ajax design patterns you can use today

Level: Intermediate

Jack D Herrington (jherr@pobox.com), Senior Software Engineer, Leverage Software Inc.

06 Mar 2007
Asynchronous JavaScript + XML (Ajax) was certainly the technology buzzword of 2006 and looks
to do just as well or better in 2007. But what does it really mean for your application? And which
common architectural patterns are used widely in Ajax applications? Discover five common Ajax
design patterns that you can use as a basis for your own work.

Sure, Ajax is the Web 2.0 buzzword that everyone wants associated with their site. But what does
it really mean? And how are engineers integrating it into their sites at an architectural level. In this
article, I cover the basics of Ajax and show some Ajax design patterns that have become proven
best practice with Web 2.0 development.

To start, Ajax is just a buzzword that covers a set of technologies, including Dynamic HTML
(DHTML) and the XMLHTTPRequest object. DHTML is a combination of three elements: Hypertext
Markup Language (HTML), JavaScript code, and Cascading Style Sheets (CSS). Using JavaScript
code on a Web page, you can change the page dynamically to add, remove, or change the content.
That’s the dynamic portion of DHTML. JavaScript code uses the XMLHTTPRequest object to request
data from the server after the page has been loaded.

The combination of these two elements — requesting data from the server on the fly and changing
the page to use the data — is the essence of what’s called Ajax and the dynamic nature of Web 2.0
sites.

But that doesn’t really tell you how these features are used in the real world and how you should
use them on your site. For that, you need a set of simple design patterns. If you are unfamiliar with
that term, it comes from the excellent book of the same name (see Resources). That book provided
a set of implementation patterns for the common tasks that confront engineers. The book provided
not just best practices for how to design systems but also a terminology that engineers can use to
talk about their code.

This article presents five common Ajax design patterns. They vary in using HTML, XML, and JavaScript
code to get data from the server. I start with the simplest pattern, which is to update your page
with new HTML from the server.

Pattern 1. Replacing HTML segments
Perhaps the most common Ajax task is to request updated HTML from the server and update a

62 Java Jazz Up Apr-08

portion of the page with it. You can do this can periodically — for example, to update stock quotes.
Or you can update on demand — for example, in response to a search request.
The code in Listing 1 requests a page from the server, and then places that content into a <div>
tag in the body of the page.

Listing 1. Pat1_replace_div.html

<html>
<script>
var req = null;
function processReqChange() {
 if (req.readyState == 4 && req.status == 200) {
 var dobj = document.getElementById(‘htmlDiv’);
 dobj.innerHTML = req.responseText;
 }
}

function loadUrl(url) {
 if(window.XMLHttpRequest) {
 try { req = new XMLHttpRequest();
 } catch(e) { req = false; }
 } else if(window.ActiveXObject) {
 try { req = new ActiveXObject(‘Msxml2.XMLHTTP’);
 } catch(e) {
 try { req = new ActiveXObject(‘Microsoft.XMLHTTP’);
 } catch(e) { req = false; }
 } }
 if(req) {
 req.onreadystatechange = processReqChange;
 req.open(‘GET’, url, true);
 req.send(‘’);
 }
}

var url = window.location.toString();
url = url.replace(/pat1_replace_div.html/, ‘pat1_content.html’);
loadUrl(url);
</script>
<body>
Dynamic content is shown between here:

<div id=”htmlDiv” style=”border:1px solid black;padding:10px;”>
</div>
And here.

</body>
</html>

Listing 2 shows the content that the code is requesting.

Listing 2. Pat1_content.html

Five common Ajax patterns

 Apr-08 Java Jazz Up 63

HTML encoded content goes here.

When I load the page in Firefox, I see the result shown in Figure 1.

Figure 1. The page with the replaced <div> tag

Go back to the code in Listing 1 and look at a few things. The first thing to notice is the loadUrl()
function, which requests a URL from the server. This function uses the XMLHTTPRequest object to
ask the server for the new content. It also specifies a callback function — in this case,
processReqChange — that’s called when the browser has received the content.
The processReqChange function then inspects the object to see whether the request has been
completed. If it has, the function sets the innerHTML of the <div> tag in the page into the text of
the response.

The use of the <div> tag as a placeholder for dynamic content is a staple of Ajax code. These tags
have no visible presence (unless you add borders and such, as I have), but they act as a good
marker for where content should go. Engineers also use the tag for replaceable segments,
as I demonstrate later. The difference between a <div> and a tag is that the former
imposes a line break (like a paragraph), while the latter delineates a section of inline text.
Getting back to the processReqChange function for a moment, it’s important that the function

Five common Ajax patterns

64 Java Jazz Up Apr-08

check the value of both the status and the readyState value. While some browsers will call the
function only when the request is complete, other browsers will call back continuously to tell the
code that the request is still running.

The tabbed display variant
Another variant of this pattern is to create a tabbed style of display. Listing 3 shows a simple
tabbed Ajax interface.

Listing 3. Pat1_tabs.html

<html>
<script>
var req = null;
function processReqChange() {
 if (req.readyState == 4 && req.status == 200) {
 var dobj = document.getElementById(‘tabDiv’);
 dobj.innerHTML = req.responseText;
 }
}

function loadUrl(tab) {
 var url = window.location.toString();
 url = url.replace(/pat1_tabs.html/, tab);
 ...
}

function tab1() { loadUrl(‘pat1_tab1_content.html’); }
function tab2() { loadUrl(‘pat1_tab2_content.html’); }
tab1();
</script>
<body>
Tab 1<a>
Tab 2<a>
<div id=”tabDiv” style=”border:1px solid black;padding:10px;”>
</div>
</body>
</html>

Listing 4 shows the content for the first tab.

Listing 4. Pat1_tab1_content.html

Tab 1 content

And Listing 5 shows the content for the second tab.

Listing 5. Pat1_tab2_content.html

Tab 2 content

Five common Ajax patterns

 Apr-08 Java Jazz Up 65

When I bring this page up in my browser, I see the first tab, as shown in Figure 2.

Figure 2. The content for the first tab

I then click the link for the second tab. The browser retrieves the second tab’s contents and shows

Five common Ajax patterns

66 Java Jazz Up Apr-08

it in the tab area, as shown in Figure 3.

Figure 3. The content for the second tab

This is the quintessential use of this design pattern — to take requests from the user and update a
portion of the display with the new material, in this case, creating the illusion of a tabbed display.
The value from the application side is that you can downloaded a much lighter-weight page to
customers, who can then access the material they want on demand.
Before Ajax, the common technique was to have both tabs on the page, then hide or show them
on demand. This meant that the HTML for the second tab was created even if it was never viewed,
wasting both server time and bandwidth. With this new Ajax method, the HTML for the second tab
is created only when the user requests it.
The read more variant

Five common Ajax patterns

 Apr-08 Java Jazz Up 67

Yet another variation on this theme is the Read more link, as shown in Figure 4.

Figure 4. The Read more link on my boring blog entry

Suppose that I really wanted to read more about the continuing adventures of my dog walk. I can
click the Read more link and have that link replaced with the complete engrossing story, as shown

Five common Ajax patterns

68 Java Jazz Up Apr-08

in Figure 5.

Figure 5. The page after clicking the Read more link

The value for customers is that they get more material seamlessly without a page refresh.
Listing 6 shows the code for this page.

Listing 6. Pat1_readmore.html

<html>
<script>
var req = null;
function processReqChange() {
 if (req.readyState == 4 && req.status == 200) {
 var dobj = document.getElementById(“moreSpan”);
 dobj.innerHTML = req.responseText;
 }
}

Five common Ajax patterns

 Apr-08 Java Jazz Up 69

function loadUrl(url) { ... }

function getMore()
{
 var url = window.location.toString();
 url = url.replace(/pat1_readmore.html/, ‘pat1_readmore_content.html’);
 loadUrl(url);
}
</script>
<body>
<h1>Walking the dog</h1>
I took my dog for a walk today.

Read more...

</body>
</html>

Listing 7 shows the content for the “read more” section.

Listing 7. Pat1_readmore_content.html

It was a nice day out. Warm and sunny. My dog liked getting out for a stretch.

This code demonstrates the use of the tag instead of the <div> tag. The approach you
use depends on the requirements of your user interface (UI). But as you can see, it’s easy to use
either approach.

Getting new HTML for the page is one thing, but what about when you want the JavaScript code on
the page to actually do something intelligent with the data. How do you get the data to the browser
in a structured way? Why XML, of course.

Pattern 2. Reading XML data
For some reason, Ajax has become synonymous with XML, even though XML isn’t strictly required.
As you can see from the examples above, you can return straight text or even fragments of HTML
— or Extensible HTML (XHTML) — code. But sending XML can have its rewards.

Listing 8 shows Ajax code that requests records about books from the server, then displays that
data in a table within the page.

Listing 8. Pat2_xml.html

<html>
<head>
<script>
var req = null;
function processReqChange() {
 if (req.readyState == 4 && req.status == 200 && req.responseXML) {
 var dtable = document.getElementById(‘dataBody’);
 var nl = req.responseXML.getElementsByTagName(‘book’);
 for(var i = 0; i < nl.length; i++) {

Five common Ajax patterns

70 Java Jazz Up Apr-08

 var nli = nl.item(i);
 var elAuthor = nli.getElementsByTagName(‘author’);
 var author = elAuthor.item(0).firstChild.nodeValue;
 var elTitle = nli.getElementsByTagName(‘title’);
 var title = elTitle.item(0).firstChild.nodeValue;

 var elTr = dtable.insertRow(-1);

 var elAuthorTd = elTr.insertCell(-1);
 elAuthorTd.innerHTML = author;

 var elTitleTd = elTr.insertCell(-1);
 elTitleTd.innerHTML = title;
} } }

function loadXMLDoc(url) {
 if(window.XMLHttpRequest) {
 try { req = new XMLHttpRequest();
 } catch(e) { req = false; }
 } else if(window.ActiveXObject) {
 try { req = new ActiveXObject(‘Msxml2.XMLHTTP’);
 } catch(e) {
 try { req = new ActiveXObject(‘Microsoft.XMLHTTP’);
 } catch(e) { req = false; }
 } }
 if(req) {
 req.onreadystatechange = processReqChange;
 req.open(‘GET’, url, true);
 req.send(‘’);
 }
}

var url = window.location.toString();
url = url.replace(/pat2_xml.html/, ‘pat2_xml_data.xml’);
loadXMLDoc(url);
</script>
</head>
<body>
<table cellspacing=”0" cellpadding=”3" width=”100%”>
<tbody id=”dataBody”>
<tr>
 <th width=”20%”>Author</th>
 <th width=”80%”>Title</th>
</tr>
</tbody>
</table>
</body>
</html>

Listing 9 shows the data for the page.

Five common Ajax patterns

 Apr-08 Java Jazz Up 71

Listing 9. Pat2_xml_data.xml

<books>
 <book>
 <author>Jack Herrington</author>
 <title>Code Generation in Action</title>
 </book>
 <book>
 <author>Jack Herrington</author>
 <title>Podcasting Hacks</title>
 </book>
 <book>
 <author>Jack Herrington</author>
 <title>PHP Hacks</title>
 </book>
</books>

When I load the page in my browser, I see the result shown in Figure 6.

Figure 6. The XML display page

Five common Ajax patterns

72 Java Jazz Up Apr-08

The big difference between this page and the pages in the previous pattern is in the processReqChange
function. Instead of looking at responseText, you now look at responseXML, an XML Document
Object Model (DOM) available only if the response from the server was properly encoded XML. Using
responseXML, I request the list of <book> tags from the XML document. I then get the <title> and
<author> elements from each. Next, I add a row to the table for each book and cells to each row to
contain the author and title data. This is a pretty rudimentary use of the XML data. More sophisticated
JavaScript code can perform client-side sorting or searching based on the returned data. Unfortunately,
the downside of transferring XML data is that it takes some time for the browser to parse through
the XML document. Also, the JavaScript code to find the data in the XML can be complex (as seen
in Listing 8). The alternative is to request JavaScript code from the server.

Pattern 3. Reading JavaScript data

Requesting JavaScript data from the server is a technique that often goes by the classy code name
JavaScript Object Notation (JSON). The value of returning JavaScript data is that it’s efficient for
the browser to parse and creates JavaScript data structures, which are a lot easier to use. Let me
revise the code in Listing 8 that read XML from the server to read JavaScript data from the server,
instead. This new code is shown in Listing 10.

Listing 10. Pat3_js.html

<html><head><script>
var req = null;
function processReqChange() {
 if (req.readyState == 4 && req.status == 200) {
 var dtable = document.getElementById(‘dataBody’);
 var books = eval(req.responseText);
 for(var b in books) {
 var elTr = dtable.insertRow(-1);

 var elAuthorTd = elTr.insertCell(-1);
 elAuthorTd.innerHTML = books[b].author;

 var elTitleTd = elTr.insertCell(-1);
 elTitleTd.innerHTML = books[b].title;
} } }

...

All the HTML code remains the same. The processReqChange function simply changes to read an
eval that the JavaScript data returned from the server. The function then uses the JavaScript
objects that come out of the eval as the source of the data, which is then added to the table.
Listing 11 shows the JavaScript data from the server.

Listing 11. Pat3_js_data.js

[{ author: ‘Jack Herrington’, title: ‘Code Generation in Action’ },
{ author: ‘Jack Herrington’, title: ‘Podcasting Hacks’ },
{ author: ‘Jack Herrington’, title: ‘PHP Hacks’ }
]

Five common Ajax patterns

 Apr-08 Java Jazz Up 73

It’s easy to see why so many Ajax application engineers prefer to use JavaScript code instead of
XML to encode the data. The JavaScript code is easier to read and manage as well as easier for the
browser to process.

With all this data-gathering and display, you see that the key to Ajax is the display of current data
— the important part there being current. So, how do you ensure that you’re always getting fresh
data from the server?

Pattern 4. Avoiding browser cache
Browsers attempt to optimize Web traffic, so if you ask for the same URL twice, it’s likely that
rather than request the page again, your browser will simply use the page stored in the browser
cache. So, another common pattern in Ajax applications is the use of some randomizing element in
the URL to ensure that the browser doesn’t return a cached result.

My favorite technique is to add the numeric value of the current time to the URL. Listing 12 shows
this technique.

Listing 12. Pat4_cache.html

<html>
<script>
...

function loadUrl(url) {
 url = url + “?t=”+((new Date()).valueOf());
 ...
}

...

This is the code from Listing 1 but with the addition of some JavaScript text manipulation of the
URL string. I append to the URL a new parameter called t that has the value of the time. It doesn’t
really matter whether the server recognizes the value. It’s just a way to ensure that the browser
ignores its URL-based page cache.

Pattern 5. Replacing multiple HTML segments
The final pattern I demonstrate is an advanced version of the first pattern: the replacement of a
<div> tag with content from the server. A common problem in Web applications is that in response
to user input, several areas of the display must be updated. For example, in a stock quote application,
one part of the display might show the most recent quote, while another portion of the display
shows a list of the most recent values.

To update multiple areas of the display, I use an XML response from the server that contains data
for both sections. Then, I use a regular expression to break out the individual sections from the
response. Listing 13 shows this technique.

Listing 13. Pat5_multi_segment.html

<html>
<head>

Five common Ajax patterns

74 Java Jazz Up Apr-08

<script>
var req = null;
function processReqChange() {
 if (req.readyState == 4 && req.status == 200) {
 var one = req.responseText.match(/\<one\>(.*?)\<\/one\>/);
 document.getElementById(‘divOne’).innerHTML = one[1];
 var two = req.responseText.match(/\<two\>(.*?)\<\/two\>/);
 document.getElementById(‘divTwo’).innerHTML = two[1];
} }

function loadXMLDoc(url) { ... }

var url = window.location.toString();
url = url.replace(/pat5_multi_segment.html/, ‘pat5_data.xml’);
loadXMLDoc(url);
</script>
</head>
<body>

This is the content for segment one:

<div id=”divOne” style=”border:1px solid black;padding:10px;”>
</div>
And segment two:

<div id=”divTwo” style=”border:1px solid black;padding:10px;”>
</div>

</body>
</html>

Listing 14 shows the data from the server.

Listing 14. Pat5_data.xml

<segments>
 <one>Content for segment one</one>
 <two>Content for segment two</two>
</segments>

When I load this code in my browser, I see the result shown in Figure 7.

Five common Ajax patterns

 Apr-08 Java Jazz Up 75

Figure 7. The two-segment display updated with data from the server

In the page code, I could have used the XML response, as the material returned from the server is
valid XML. But it was easier to use regular expressions instead to crack the individual segments
from the XML code.

Conclusion
Ajax is as powerful as it is misunderstood and misused. The patterns I’ve shown in this article
provide a good jumping-off point for using Ajax in your Web application. But in addition to using
the code provided here, I recommend having a look at some of the great Ajax and Web UI libraries
that have come along with the Web 2.0 revolution. Chief among these is the Prototype.js library,
which provides easy methods to get data to and from the server as well as cross-browser-compliant
methods to update Web page content. The value of using these libraries is that dedicated engineers
maintain and test them on a wide variety of browsers and platforms, which can save you a lot of
work and headache.

Either way you cut it, Ajax as demonstrated by the patterns in this article is something you should
check into to add dynamic behavior to your applications.

Five common Ajax patterns

76 Java Jazz Up Apr-08

Advertise with JavaJazzUp
We are the top most providers of technology
stuffs to the java community. Our technology
portal network is providing standard tutorials,
articles, news and reviews on the Java
technologies to the industrial technocrats. Our
network is getting around 3 million hits per
month and its increasing with a great pace.

For a long time we have endeavored to provide
quality information to our readers. Furthermore,
we have succeeded in the dissemination of the
information on technical and scientific facets of
IT community providing an added value and
returns to the readers.

We have serious folks that depend on our site
for real solutions to development problems.

JavaJazzUp Network comprises of :

http://www.roseindia.net
http://www.newstrackindia.com
http://www.javajazzup.com
http://www.allcooljobs.com

Advertisement Options:

Banner Size Page Views Monthly
Top Banner 470*80 5,00,000 USD 2,000
Box Banner 125 * 125 5,00,000 USD 800
Banner 460x60 5,00,000 USD 1,200
Pay Links Un Limited USD 1,000
Pop Up Banners Un Limited USD 4,000

The http://www.roseindia.net network is the
“real deal” for technical Java professionals.
Contact me today to discuss your
customized sponsorship program. You may
also ask about advertising on other
Technology Network.

Deepak Kumar
deepak@roseindia.net

 Apr-08 Java Jazz Up 77

Valued JavaJazzup Readers Community

We invite you to post Java-technology
oriented stuff. It would be our pleasure
to give space to your posts in
JavaJazzup.

Contribute to Readers Forum

If theres something youre curious about, were
confident that your curiosity, combined with the
knowledge of other participants, will be enough
to generate a useful and exciting Readers
Forum. If theres a topic you feel needs to be
discussed at JavaJazzup, its up to you to get it
discussed.

Convene a discussion on a specific subject

If you have a topic youd like to talk about .
Whether its something you think lots of people
will be interested in, or a narrow topic only a
few people may care about, your article will
attract people interested in talking about it at
the Readers Forum. If you like, you can prepare
a really a good article to explain what youre
interested to tell java technocrates about.

Sharing Expertise on Java Technologies

If youre a great expert on a subject in java,
the years you spent developing that expertise
and want to share it with others. If theres
something youre an expert on that you think
other technocrates might like to know about,
wed love to set you up in the Readers Forum
and let people ask you questions.

Show your innovation

We invite people to demonstrate innovative
ideas and projects. These can be online or
technology-related innovations that would bring
you a great appreciations and recognition
among the java technocrates around the globe.

Hands-on technology demonstrations

Some people are Internet experts. Some are
barely familiar with the web. If you’d like to show
others aroud some familiar sites and tools, that
would be great. It would be our pleasure to
give you a chance to provide your
demonstrations on such issues : How to set

up a blog, how to get your images onto Flickr,
How to get your videos onto YouTube,
demonstrations of P2P software, a tour of
MySpace, a tour of Second Life (or let us know
if there are other tools or technologies you
think people should know about...).

Present a question, problem, or puzzle

Were inviting people from lots of different
worlds. We do not expect everybody at Readers
Forum to be an expert in some areas. Your
expertise is a real resource you may contribute
to the Java Jazzup. We want your curiosity to
be a resource, too. You can also present a
question, problem, or puzzle that revolves
around java technologies along with their
solution that you think would get really
appreciated by the java readers around the
globe.

Post resourceful URLs

If you think you know such URL links which
can really help the readers to explore their java
skills. Even you can post general URLs that
you think would be really appreciated by the
readers community.

Anything else

If you have another idea for something youd
like to do, talk to us. If you want to do
something that we havent thought of, have a
crazy idea, wed really love to hear about it.
Were open to all sorts of suggestions, especially
if they promote readers participation.

78 Java Jazz Up Apr-08

 Apr-08 Java Jazz Up 79

