
 Nov-07 Java Jazz Up 1

2 Java Jazz Up Nov-07

 Nov-07 Java Jazz Up 3

November 2007 Volume I Issue V

“ Innovative great ideas always
encounter violent opposition from

mediocre minds. ”

Published by

RoseIndia

JavaJazzUp Team

Editor-in-Chief

Deepak Kumar

 Editor-Technical

Ravi Kant
Vinod Kumar

Sr. Graphics Designer

Suman Saurabh

Graphics Designer

Santosh Kumar

Editorial

Register with JavaJazzUp

and grab your monthly issue

“Free”

Dear Readers,

Happy Deepawali

We are here again with the Nov’ 07 issue of Java Jazz-
up, celebrating the festival of light together. The
current edition highlights the interesting Java
technologies presented in form of articles developed by
the Java Jazz-up developers’ Team. This issue reflects
our consistent attempts to avail the quality
technological updates that enforce the readers to
appreciate it a lot and be a part of its Readers
Community.

The Editorial Choice section highlights the editor’s
viewpoint orienting around the java innovations in
diverse spheres of human interest. In this issue, this
section talks high of AOP and IoC technologies and
tries to avail its role in the current java software
development scenario.

The Java ME section highlights the role of java in the
development of software for small, resource-
constrained devices such as cell phones, PDAs and set-
top boxes. This issue targets to provide a beginner’s
guide to start with ‘Java Mobile Phones Gaming
Applications’ in a very easy and concise manner.

The set of articles conferring technologies like Maven2,
Design patterns, JSF tags, Web Services, JBoss Seam,
AJAX etc. are provided in such a manner that even a
novice learns and implements the concepts in a very
easy manner.

Java News and Updates section provides the latest
updates of the things happening around the globe
making the readers aware of the java technological
advancement. In this section, you will know the new
features introduced in the existing tools, utilities,
application servers, IDEs, along with the Java API
updates.

We are providing it in a PDF format so that you can
view and even download it as a whole and get its hard
copy.

Please send us your feedback about this issue and
participate in the Reader’s Forum with your problems,
issues concerned with the topics you want us to
include in our next issues.

Editor-in-Chief
Deepak Kumar
Java Jazz up

4 Java Jazz Up Nov-07

05 AOP and IoC| Aspect Oriented programming (AOP) decomposes a system into concerns (i.e.
term referring to the core elements required to focuson), instead of objects. It deals with
“aspects” that cross-cuts across the code which could be difficult or impossible to modularize
with OOP.

10 Java News | Sentilla Corp. introduced a software suite for java applications to run on low-
power microprocessors embedded on devices. Users can wirelessly manage those
applications using the platform. Joe Polastre, chief technology officer and co-founder of
Sentilla, said “It overcomes challenges on running Java in tiny devices with small memory by
squeezing a full Java environment into microprocessors.

11 New Releases | Sun’s released the Java Wireless Toolkit 2.5.2.The Toolkit includes build
tools, utilities, and a device emulator. This WTK update provides improved support for
multiuser environments and also linux binary that is supported on systems running glibc 2.3
libraries.

12 Java Developers Desk | Migrating to EJB 3.0 is a big step towards simplifying the process
of developing EJBs, which reduces lots of complexities, time and cost. In spite of being rich
featured, developers feel complex working with previous versions of EJB.

13 Java ME | A Mobile Gaming is the best medium of entertainment in the real life because
mobile game is user friendly and portable. However,the mobile industry both in gaming and
applications is still in its infancy.

16 JBoss Seam: Stitching JSF and EJB3| Open source, and developed under the auspices of
JBoss, Seam is a component framework that focuses to deliver full-featured JEE 5 applications
in a lightweight code base i.e. requiring only a fraction of the code of regular JEE applications.

21 Maven Plug-in | Plugins are great in simplifying the life of programmers; it actually reduces
the repetitive tasks involved in the programming.

23 Tomahawk Tags |Tomahawk tags are the collection of standard components with extended
functionality and supports all the existing JSF components with additional sets of functionality

29 Struts2 | Apache Struts is an open-source framework used to develop Java web application.
Originallydeveloped by the programmer and author CraigR.

37 Design Patterns | Structural Patterns are design patterns, which describe the best possible
ways to combine the objects and classes forming a larger complex structure in an easy manner

43 JSF| Many of the web-based applications consists of login module which lets the user enter
with its own identity and also let the admin authenticate the user or differentiate between
the registered and normal user.

47 AJAX: Redefining Web Applications| AJAX stands for Asynchronous JavaScript And XML.
AJAX is not a new programming language, but a new way to use existing standards.

57 Tips & Tricks| Splash screens are standard part of many GUI applications to let the user
know about starting of the application. AWT/Swing can be used to create splash screens in
Java. Prior to Java SE 6, you need to create a window and include an image in it when
main method starts to get the behavior of splash screen.

67 Advertise with Us | We are the top most providers of technology stuffs to the java community.

Content

 Nov-07 Java Jazz Up 5

Editor’s Choice -AOP and IoC
AOP : New Programming Design
Paradigm

Aspect Oriented programming (AOP)
decomposes a system into concerns (i.e. term
referring to the core elements required to focus
on), instead of objects. It deals with “aspects”
that cross-cuts across the code which could
be difficult or impossible to modularize with OOP.

Seperation of concerns (SoC)
AOP promotes separation of concerns within
the systems where separation of concerns
(SoC) is a process to break a computer program
into distinct features that were previously
overlapping in functionality, as little as possible.
A concern is any piece of interest needed to
focus on while developing a program. Typically,
concerns are synonymous with features or
behaviors, lets talk of a credit card processing
system, the related core concern of the system
deals with processing the monetary
transactions, while its application-level
concerns handles logging, transaction integrity,
authentication, security, performance, and so
on. Many such concerns are known as
crosscutting concerns. Lets talk of Logging, it
offers one example of a crosscutting concern.
A logging strategy necessarily affects every
single logged part of the system. Logging
thereby crosscuts all the logged classes and
methods.

Such crosscutting concerns affect the multiple
implementation modules. With the current
programming methodologies, crosscutting
concerns span over multiple modules causing a
system to be complex to design, understand,
implement, evolve and even maintain with time.

Lets quickly give a glance to the OOPs concept.
OOPs programming model creates programs
around the real world entities. Here the
programs are developed around the objects
and data rather than actions and logics. In
OOPs, every real life object has properties and
behavior. This feature is achievable with different
languages like C++, Java, C# etc. However in
the current scenario, object-oriented
programming (OOP) seems to be no more an
extra-ordinary programming model where real
world problems are decomposed into objects

encapsulating behavior and data in a single unit.
Although the developers have met great success
in the past in modeling and implementing
complex software systems, However they faces
crucial problems in maintaining the code while
working with large projects. Most of the time,
to make a minor change to a program may
require maintaining several updates to a large
number of unrelated modules. Now with the
advent of AOP, such problems are easily
rectified, as it allows the developers to solve
the complex problems involved with software
development that couldn’t be resolved easily
with the object-oriented programming
techniques.

However, AOP being a new programming
technique, allows programmers to modularize
crosscutting concerns. It allows the
programmers to dynamically modify the static
OO model to create a system that can grow to
meet new requirements. It allows separating
the crosscutting concerns into the single units
called aspects.

It is a modular unit of crosscutting
implementation, which encapsulates behaviors
that affect multiple classes into reusable
modules. AOP is not bound to a specific
programming language. It is a concept that can
be implemented with different languages (for
example C++, Smalltalk, Java etc.).

Aspect-Oriented Software Development (AOSD)
Aspect-Oriented Software Development (AOSD)
attempts to aid programmers in the separation
of concerns, specifically cross-cutting concerns,
as an advance to the modularization. AOP does
so using primarily language changes, while AOSD
uses a combination of language, environment,
and method.

The core construct of AOP is the aspect, which
encapsulates behaviors affecting multiple classes
into reusable modules. Systems are composed
of several components each responsible for a
specific piece of functionality. Irrespective of the
core functionality of a program, the system
services like logging, transaction management,
security etc., must be included in the program.
These system services are commonly referred
to as ‘cross-cutting concerns’ as they tend to

6 Java Jazz Up Nov-07

cut across multiple components in a system.

AOSD makes it possible to modularize and
separate these services and then apply them
declaratively to the components and we can
focus on our own specific concerns. For instance
if we talk of spring framework, there aspects
are wired into objects in the spring XML file in
the same way as JavaBean does. This process
is also known as ‘Weaving’.

In a typical object-oriented development
approach the developer might implement logging
functionality by putting logger statements in all
your methods and Java classes. In an AOP
approach you would instead modularize the
logging services and apply them declaratively
to the components that required logging. The
advantage, of course, is that the Java class
doesn’t need to know about the existence of
the logging service or concern itself with any
related code. As a result, application code written
with Spring AOP is loosely coupled.

 Lets do a comparison of OOP’s model
with an AOP model, diagrammatically:

Here, the OOPs model shows that a source code
is directly compiled to an executable form. On
the other hand, the AOP model depicts the flow
such that the source code in the OOP model
gets compiled with the aspects such that it
modifies the behavior of the OOPs model and
modularizes the crosscutting concerns.

Among the most OOPs languages, Java is a
true Object-Oriented Programming language
with a best support for AOP techniques. There
are multiple tools available to support AOP with
Java, few of them are shown below:

· AspectJ
· AspectWerkz
· Hyper/J
· JAC
· JMangler
· MixJuice
· PROSE
· ArchJava

II. IoC: Inversion Of Control

“The IoC pattern enables better software design
that facilitates reuse, loose coupling, and easy
testing of software components.”

The basic concept of the Inversion of Control
pattern (also known as dependency injection)
is that you do not create your objects but
describe how they should be created. You avoid
connecting components and services together
in your code. Instead the configuration files
are used to describe the services needed by a
component .

The Inversion of Control (IoC) pattern, also
known as Dependency Injection, has recently
become popular in the JEE community. Several
open source projects, including Spring,
PicoContainer, and HiveMind, use the IoC pattern
to develop lightweight J2EE Containers. IoC is
not a new concept, however. It has been around
for several years now. Using object-oriented
design principles and features such as interface,
inheritance, and polymorphism, the IoC pattern
enables better software design that facilitates
reuse, loose coupling, and easy testing of
software components.

Inversion of Control (IoC) means that objects
do not create other objects on which they rely
to do their work. Instead, they get the objects
that they need from an outside source (for
example, an xml configuration file).

Dependency Injection (DI) means that this is
done without the object intervention, usually
by a framework component that passes
constructor parameters and set properties.

AOP and IoC

 Nov-07 Java Jazz Up 7

IoC: salient features

1. Eliminates lookup code from within your
application.

2. Allows pluggablity and hot swapping.
3. Promotes good OO design.

 4. Enables the reuse of existing code.
 5. Makes an application extremely testable.

In a typical IOC scenario, the container creates
all the objects, wires them together by setting
the necessary properties. It also determines
when methods will be invoked. The three-
implementation pattern types for IOC are listed
in the table below.

Type 1: Services need to implement a
dedicated interface through which they are
provided with an object from which they can
look up dependencies (for example, additional
needed services).

Type 2: Dependencies are assigned through
JavaBeans properties (for example, setter
methods).

Type 3: Dependencies are provided as
constructor parameters and are not exposed
as JavaBeans properties.

For Instance, the Spring framework uses the
Type 2 and Type 3 implementations for its IoC
container. IoC is a broad concept, its two main
types are:

1. Dependency Lookup: In the Type 1 IoC
The container provides callbacks to components
and a lookup context. The managed objects
are responsible for their other lookups. This is
the EJB Approach. The Inversion of Control is
limited to the Container involved callback
methods that the code can use to obtain
resources. Here JNDI is used to look up other
EJBs and resources. Because of this reason EJB
is not branded as ‘IOC framework’. There are
some problems in this implementation. The
class needs a application server environment
as it is dependent on JNDI and it is hard to test
as we need to provide a dummy JNDI contest
for testing purpose.

2. Dependency Injection: Type 2 / Type 3
IoC In this application objects are not
responsible to looking up resources they depend
on. Instead IoC container configures the object
externalizing resource lookup from application
code into the container. That is, dependencies
are injected into objects. Thus lookups are
completely removed from application objects and
it can be used outside the container also. Here,
the objects can be populated via Setter Injection
(Java-Beans properties) or Constructor Injection
(constructor arguments). Each method has its
own advantage and disadvantage.

Here, the objects can be populated via Setter
Injection (Java-Beans properties) or
Constructor Injection (constructor arguments).
Each method has its own advantage and
disadvantage.

Setter Injection: Normally in all the java beans,
we use setter and getter method to set and
get the value of property as follows:

public class nameBean {
String name;
public void setName(String a) {
name = a;
}
public String getName() {
return name;
}
}

We create an instance of the bean ‘nameBean’
(say bean1) and set property as

bean1.setName(“amit”);

Here in setter injection, we set the property
‘name’ by using the <property> subelement of
<bean> tag in spring configuration file as shown
below:

<bean id=”bean1" class=”nameBean”>
<property name=”name” >
<value>amit</value>
</property>
</bean>

AOP and IoC

8 Java Jazz Up Nov-07

The subelement <value> sets the ‘name’
property by calling the set method as
setName(“amit”); This process is called setter
injection.

constructor injection : For constructor
injection, we use constructor with parameters
as shown below:

public class nameBean {
String name;
public nameBean (String a) {
name = a;
}
}

We will set the property ‘name’ while creating
an instance of the bean ‘nameBean’ as

nameBean bean1 = new nameBean(“amit”);

Here we use the <constructor-arg> element to
set the the property by constructor injection
as:

<bean id=”bean1" class=”nameBean “>
<constructor-arg>
<value>Bean Value</value>
</constructor-arg>
</bean>

To set properties that reference other beans
<ref>, subelement of <property> is used as
shown below:

<bean id=”bean1" class=”bean11">
<property name=”game”>
<ref bean=”bean2"/>
</property>
</bean>
<bean id=”bean2" class=”bean22" />

The IOC containers

The mainstream JEE involves heavyweight
containers to develop applications. So
exploring alternatives and coming up with
creative ideas have evolved a lot of open
source java communities. In the Java community
there’s been a rush of lightweight containers

that help to assemble components from
different projects into a cohesive application.
Several open source projects, including Spring,
PicoContainer, and HiveMind use the IoC pattern
to develop lightweight JEE Containers. The
container manages the life cycle and
configuration of application objects.

Let’s see how Spring container implements the
IoC concepts

Spring should not, however, be confused with
traditional heavyweight EJB containers, which
are often large. The Spring actually comes with
two distinct containers:

1. Bean Factories - defined by
“ o r g . s p r i n g f r a m e w o r k
beans.factory.BeanFactory” are the simplest
containers, providing support for dependency
injection.

2. Application contexts - defined by
“org.springframework.context.
ApplicationContext” provides the application
framework services.

Configuration metadata

As can be seen in the above image, the Spring
IoC container consumes some form of
configuration metadata; this configuration
metadata is nothing more than how you (as
an application developer) inform the Spring
container as to how to “instantiate, configure,
and assemble [the objects in your application]”.
This configuration metadata is typically supplied
in a simple and intuitive XML format. When
using XML-based configuration metadata, you
write bean definitions for those beans that you
want the Spring IoC container to manage, and
then let the container do it’s stuff.

BEAN FACTORY:

Bean factory is an implementation of the factory
design pattern. Its function is to create and
dispense beans. As the bean factory knows
about many objects within an application, it is
able to create association between collaborating
objects, as they are instantiated. This emoves
the burden of configuration from the bean and

AOP and IoC

 Nov-07 Java Jazz Up 9

the client.
BEAN FACTORY supports two object modes.

Singleton mode provides a shared instance
of the object with a particular name, which can
be retrieved on lookup. Singleton is the default
and most often used object mode. It is ideal
for stateless service objects.

Prototype mode ensures that each retrieval
will result in the creation of an independent
object. Prototype mode would be best used in
a case where each user needed to have his or
her own object. The bean factory concept is
the foundation of Spring as an IOC container.
IOC moves the responsibility for making things
happen into the framework and away from
application code. The Spring framework uses
JavaBean properties and configuration data to
figure out which dependencies must be set.

There are several implementation of
BeanFactory like
“org.springframework.beans.factory.
xml.XmlBeanFactory” which loads its beans
based on the definition contained in an XML
file.

APPLICATION CONTEXT:

The Application Context is spring’s more
advanced container. Like ‘BeanFactory’ it can
load bean definitions, wire beans together and
dispense beans upon request. Additonally, It
also provides:

1. A means for resolving text messages,
including support for internationalization
ie. i18n messages

2. A generic way to load file resources.
3. Events to notify beans that are registered

as listeners.
Because of additional functionality, ‘Application
Context’ is preferred over a BeanFactory.
BeanFactory is used for simple applications and
when the resource is scarce like mobile devices.

III Service Abstraction Layers

Spring provides consistent integration with
various standard and 3rd party APIs through
its various Service abstraction layers. Few of
them are:

1. Transaction Management abstraction for
JTA, JDBC, others
2. Data Access abstraction for JDBC,
Hibernate, JDO, TopLink, iBatis
3. Abstraction for Emailing
4. Remoting abstraction layers for EJB, Web
Services, RMI, Hessian/Burlap

Benefits of the Service Abstraction Layers in
spring framework:

1. There is no implicit contract with JNDI, etc.
2. It separates the user from the underlying
APIs.
3. It enhances the reusability to a great
extent.
4. Spring abstractions always consist of inter
faces.
5. Testing is kept simpler than ever before.
6. For data access, Spring uses a generic
transaction infrastructure and DAO exception
hierarchy that is ommon across all sup ported
platforms.

AOP and IoC

10 Java Jazz Up Nov-07

Sentilla Puts Java on Chips
Sentilla Corp. introduced a software suite for
java applications to run on low-power
microprocessors embedded on devices. Users
can wirelessly manage those applications using
the platform. Joe Polastre, chief technology
officer and co-founder of Sentilla, said “It
overcomes challenges on running Java in tiny
devices with small memory by squeezing a full
Java environment into microprocessors. The
platform uses memory management and
storage on a device to swap Java code in and
out of memory as needed. That allows the
platform to use large applications without
draining resources”. Currently it works with
Texas Instruments Inc.’s MSP430
microprocessor, a 16-bit RISC processor but
in future more microprocessors will support it.

Apache Geronimo Passes J2EE Test Kit
The Apache Software Foundation’s Geronimo
1.0-M5, open source J2EE application server,
has passed Sun Microsystem’s the J2EE 1.4.1
test compatibility kit, or TCK. It was announced
during a “birds of a feather” presentation at
the recent JavaOne show in San Francisco.
Geronimo provides support for Web, EJB, JMS
and EIS applications, combined with enterprise
grade configuration and management. “People
shouldn’t think of Geronimo as just another
J2EE app server, but as the start of a system
framework that can be used to build a variety
of tailored infrastructure services,” Gluecode’s
former CTO, Jeremy Boynes

BluePhoenix Wins Major Contract to
Modernize PowerBuilder Applications to
Java for Global Telecommunications
Customer
BluePhoenix Solutions announced that it has
won a major contract to convert PowerBuilder
applications to Java for a global
telecommunications company. In this,
BluePhoenix’s LanguageMigrator conversion
solution will be implemented, which enables
organizations to automatically migrate legacy
applications to prevailing languages and
technologies. PowerBuilder is a 4GL rapid
application development environment developed
in early 90s. It has been used by thousands of
companies but still many companies want to
migrate their PowerBuilder applications to Java.

JAVA AROUND THE GLOBE
This is because of growing maintenance cost,
functionality limitations, and fewer PowerBuilder
programmers.

”Our customer’s changing business
requirements dictates a move to a modern
platform and our automatic migration solution
supports their strategic direction to consolidate
on Java,” said Arik Kilman, CEO of BluePhoenix.
“Our LanguageMigrator solution along with our
proven migration methodology enables us to
guarantee results while minimizing risk and
disruption to current operations.”

Sun starts bidding adieu to mobile-specific
Java

Java Standard Edition (SE) for desktop
computers will gradually replace Java Micro
Edition (ME) as technology improvements let
more computing power be packed into smaller
devices, said James Gosling, the Sun vice
president and known as the title “father of Java”.

”We’re trying to converge everything to the
Java SE specification. Cell phones and TV set-
top boxes are growing up,” Gosling said at a
Java media event here Wednesday. “That
convergence is going to take years.”

 Nov-07 Java Jazz Up 11

New Releases
Sun’s released the Java Wireless Toolkit
2.5.2.
Sun has released the Java Wireless Toolkit 2.5.2.
The Toolkit includes build tools, utilities, and a
device emulator. This WTK update provides
improved support for multiuser environments
and also linux binary that is supported on
systems running glibc 2.3 libraries. This release
contains all advanced development features of
its previous versions 2.2, 2.5, 2.5.1 such as
MIDlet signing, certificate management,
integrated over-the-air (OTA) emulation, push
registry emulation, and more. It also includes
Nokia’s scalable network application package
(SNAP) mobile API and the SNAP Mobile Sample
Application as part of its external API feature.

Nuxeo releases version 5.1 of its open
source ECM platform
Nuxeo, the leader of open source ECM
(Enterprise Content Management) provided
complete ECM solutions for many large
companies, has announced Nuxeo Enterprise
Platform 5.1, a new version of its ECM platform.
It includes extensible service-oriented
architecture (SOA) and enhanced performance
and functionality like advanced search service,
Data import/export service, Enhanced horizontal
scalability, Electronic and physical records
management. Delivering enterprise-grade
functional & technical support, certified software
patches and updates and management tools
are also available during every stage of the
application lifecycle. It is completely extensible
because it is built on infrastructure of plug-ins
and extension points based on the OSGi
standard.
 “Nuxeo Service Platform, built on industry
standards (such as Java EE 5 and OSGi), offers
a complete range of component-based services
making it possible to quickly build ECM
applications. This SOA approach offers real and
tangible benefits to our customers and our
partners, software developers and integrators.
Nuxeo strengthens its technological advantage,
with the help of a dynamic ecosystem, and
positions us to inject new energy and innovation
into the ECM market,” explains Eric Barroca,
Executive VP in charge of Operations.

Sun releases NetBeans 6.0 Beta 2 under
both GPL2 and CDDL.
Sun and the NetBeans community released the
latest build of NetBeans 6.0 Beta 2 and
announced that this Java-based IDE is now
dual-licensed with CDDL and the GNU General
Public License (GPL) with Classpath exception.

JADE 6.2 launches with mobile
compatibility, Java interoperability
Jade Software has released the latest version
of its software platform, JADE 6.2, which
enables thin clients and standalone database
applications to run on Windows Mobile devices.
It also enables Java programs to interoperate
with JADE applications. It provides a Java
framework that encapsulates their Object
Manager, Database and core programming
model.
JADE program manager Dean Cooper says,
“Jade is committed to interoperability. We have
always had C and C++ language interoperability.
Since JADE 6.0 we have invested in support
for XML and web services. With JADE 6.2 we
are enthusiastic about opening up to the Java
community, both in industry and academia.”

Apache Struts 2.0.11 GA release available
The Apache Struts group has announced the
release of Struts 2.0.11 and it is available as a
“General Availability” release. This release
includes a number of fixes and improvements
since the 2.0.9 GA release. Apache Struts 2 is
an elegant, extensible framework for creating
enterprise Java web applications and is designed
to streamline the full development cycle, from
building, to deploying, to maintaining
applications over time.

12 Java Jazz Up Nov-07

Migrating to EJB 3.0 is a big step towards
simplifying the process of developing EJBs,
which reduces lots of complexities, time and
cost. In spite of being rich featured, developers
feel complex working with previous versions of
EJB.

Limitations of EJB 2.1:
Developing EJB before release of EJB 3.0

was not so easy because of some unnecessary
steps involved that are usually unused. Some
limitations of EJB 2.1 are listed below:

1 A set of three source files must be
create

2 Creating multiple xml deployment
descriptors

3 Implementing several callback methods
4 Throwing several types of exceptions
5 EJB-QL is limited in functionality and

difficult to use

Features of EJB 3.0:
Now, have a look over the new features of

EJB 3.0 that achieved some simplicity over the
previous EJB APIs in various ways:

1 EJBs are now Plain Old Java Objects
(POJOs)

2 No need of home and object interface.
3 No need of any component interface.
4 Unnecessary artifacts and lifecycle

methods are optional
5 Use of java annotations instead of using

XML descriptors
6 Use of dependency injection to simplify

client view
7 Simplify APIs to make flexible for bean’s

environment
8 Defaults are assumed whenever possible

Migration from EJB 2.1 to EJB
3.0
Lets go through some points justifying
reasons to adopt EJB 3.0 instead of EJB 2.1:

1. In EJB 2.1, home interface extends the
javax.ejb.EJBHome interface and local
home interface extends the
javax.ejb.EJBLocalHome interface. The

EJB 2.1 remote interface extends the
javax.ejb.EJBObject interface and local
interface extends the
javax.ejb.EJBLocalObject interface. In EJB
3.0, home and component interfaces are
replaced with POJI business interfaces.

2. EJB 2.1 needs the developer to
implement a variety of callback methods
in the bean class, like ejbActivate(),
ejbPassivate(), ejbLoad(), and ejbStore(),
most of which were never used. EJB 3.0
doesn’t force to implement any of these
methods and instead can designate any
arbitrary method as a callback method
to receive notifications for life cycle
events.

3. In EJB 2.1, session bean implements the
SessionBean interface and entity bean
implements the EntityBean interface. In
EJB 3.0, session and entity bean classes
are POJOs and do not implement the
SessionBean and EntityBean interfaces.

4. The deployment descriptor, which
specifies the EJB name, the bean class
name, the interfaces, the finder methods
etc.is not required because they are
replaced by metadata annotations in the
bean classes. Annotations are available
in JDK 5.0 so you need JDK 5.0 to develop
EJB 3.0 EJBs.

5. In EJB 2.1, client application finds a
reference to entity and session bean
objects using JNDI name but in EJB 3.0,
client finds them using dependency
annotations like @Resource, @Inject, and
@EJB.

6. In EJB 2.1, developers used their own
way to perform database specific
operations like primary key generation
while EJB 3.0 provides support for several
database-specific operations. The O/R
mapping model has intrinsic support for
native SQL. The O/R mapping is specified
using annotations.

7. Runtime services like transaction and
security are often implemented as the
interceptor methods managed by the
container. However, in EJB 3.0 developers
can write custom interceptor. So
developers have control for the actions
like committing transaction, security
check, etc.

Java Developers Desk - EJB 3.0

 Nov-07 Java Jazz Up 13

Mobile Gaming

A Mobile Gaming is the best medium of
entertainment in the real life because mobile
game is user friendly and portable. However,
the mobile industry both in gaming and
applications is still in its infancy. Developers,
manufacturers and carriers are all still working
hard to revolutionize the mobile industry and
ultimately drive millions of Dollars in revenue.
As a result, graphics are getting better and
similarly game play is getting better.

Always Start Simple

Always start with a simple standalone game that
doesn’t do much visually nor interactively and
yet still gives you a good understanding how a
game works and the other required information
needed to start with a complete gaming
application. It is better to finish a simple game
and feel sense of accomplishment and then
tackle a harder game.

Game Categories

Well generally if you look closely at any game
they all fall under a certain kind of game type.
Some games may seem really cool to elaborate
but if you break them down they are either re-
used or developed with more ideas from the
existing games. If you look at games like
DukeNukem, Doom, Quake, Freelancer, Counter
Strike, Return Castle Wolfestein. They are really
just the same ole games that were in 2D but
now are in 3D.
Games can be roughly broken down into the
categorieslike Arcade/Action Fast-paced, Rich
graphics, highly interactive games.
For example, Card Games such as Poker,
BlackJack Strategy Requires a lot the thinking
and tactical moves and possible micro
management. The above are more of the
common categories of course there are others
like trivia, Simulation.

Mobile Game Constraints

Features such as memory, screen size, even
colors act as the big hurdles while developing
the nice java mobile games. However, all of these

are usually not a factor for console and PC
application development. These constraints
become more evident in a mobile game then in
case of a mobile application as it requires a high
interaction between user inputs, graphics,
animation, sound and/or vibration. Additionally,
while developing games you not only have to
consider different manufacturers but also the
different mobile handset models for the same
manufacturer. Phone models can differ vastly
from model to model in memory, color, screen
size and user interface.

I. Memory

Types of Memory

In general working memory otherwise known
as heap memory is the area of memory
where the game stores information during
execution of the game and is released when
the game is terminated. You will have to refer
to the manufacturers manual for the exact
specifications. This is important to you because
if the game is bigger then the allocated working
memory on a device then the game simply won’t
run. Another memory you need to concern
yourself with is the storage memory
otherwiseknown as RMS the Record
Management System. You need to be aware of
the totalallowable storage that is available for
the particular handsets you wish to deploy to
and possibly build an alternative logic into the
game for cases when memory does run out.

II. Display, Size and Color

Aside from memory another factor you must
take into consideration is the size of the
screen for each mobile handset. Take for example
a Sony Ericsson P800 when folded out has pixel
display of 208 × 320 and a Nokia 3650 has a
display of 176 × 208. You may consider
releasing specific version that includes the
appropriate image sizes. The Nokia may have
sprites the size of 16 × 16 pixels and the P800
may have sprites the size of 32 × 32. Though
more and more mobile handsets are being
released with color screens you should take in
consideration the millions of existing phones
already sold on the market that only have black
and white displays.

Java ME

14 Java Jazz Up Nov-07

Coding Tips

The following tips are only suggestions and
may or may not give gains in performance, it
is to your own judgment and discretion to use
them or not.

1. Use StringBuffer instead of String because
of the fact the String object cannot be
changed. Any modification to a String variable
is actually a new object creation.

2. Accessing class variables directly is faster
then using setter and getter methods.

3. Using local variables are more efficient then
instance/class variables

4. Using variables are more efficient then
arrays.

5. Avoid synchronization in loops because
there is an extra over head to lock and
unlock each time the loop occurs

6. Counting down in loops is faster then
counting up

7. Use compound operators like × += 1
instead o f × = × + 1 because fewer byte
codes is generated

8. Remove constant calculations in loops

9. Reuse objects

10. Assign null to unused objects, especially
unused threads

11. Try to use already built in methods, for
example if you want to copy data from
one array to another use System.arraycopy
more thenbe more efficient then the one you
created yourself

Game applications with JAVA(TM)
Now, the gaming application for small devices
is easy and fun with new MIDP 2.0 API. The
biggest difference for a game developer between
MIDP 1.0 and MIDP 2.0 lies with the enhanced
graphics capabilities. With MIDP 1.0 you can
certainly write some fun games—those of us.

Now with the 2.0 version, the Mobile
Information Device Profile doesn’t bring to the
level of the latest game cube, but it brings the
user’s cell phone to the realm of Super Mario
Brothers or there about.
A MIDlet is very much like an applet except that
it runs on a mobile device rather than in a
browser.

The directory structure of the gaming
application consists of the following:

• src, containing source code

• bin, containing the manifest.mf file, JAD
file, and JAR file

• classes, containing the compiled classes

• res, containing image, data, and other
files required by the applicationJ2ME
BASICS

MIDlet Programming

Programming with MIDlet is very much similar
to creating a J2SE application. However, a MIDlet
is less robust than a J2SE application as there
exist a lot of restrictions, imposed by the small
computing devices.

Let’s illustrate the details of developing a
simplest MIDlet program i.e. A Hello World
program in the Java platform ME Style.

A MIDlet is a java class which extends the MIDlet
class. It acts as an interface between an
application statements and the run-time
environment (controlled by the application
Manager). A MIDlet class should contain 3
abstract methods that are used to manage the
life cycle of the MIDlet by the application
manager. These abstract methods
are:

i) startApp(),
ii) pauseApp(),
iii) destroyApp().

startApp()

Java ME

 Nov-07 Java Jazz Up 15

The startApp() method is called by the
application manager as soon as the MIDlet is
started. It contains statements that are
executed each time the application begins
execution.

pauseApp()

The pauseApp() method is called before the
application manager temporarily stops the
MIDlet. The application manager restarts the
MIDlet by recalling the startApp() method.

destroyApp()

The destroyApp() method is called prior to the
termination of the MIDlet by the application
manager.

Lets see the basic shell of a MIDlet through a
example.

In our example, the MIDlet class called
BasicMIDletShell extends the MIDlet class.
Any name can be used for a class as long as it
conforms to the Java class naming conventions.

public class BasicMIDletShell extends MIDlet
{
public void startApp()
{
}
public void pauseApp()
{
}
public void destroyApp(boolean
unconditional)
{
}

MIDP 2 Game Classes

The popularity of Java platform ME and game
development has sprouted several carrier and
manufacturer specific custom classes
supporting the game development. However,
the main problem with this is portability, e.g.
using Siemens Sprite class make

it difficult for the user to port the game to a
Nokia handset, as it requires to re-implement
the sprite class.
Release of MIDP 2.0 removed some of these
common problems occurred with the game
portability. MIDP 2.0 is released with the
introduction of five new classes:

_ GameCanvas

_ Sprite

_ Layer

_ LayerManager

_ TiledLayer

With these new game classes the user’s code
potentially become a lot easier issue and now
you do not have to implement the custom
classes such as Sprite. These classes are now
a part of the underlying Java environment on
the mobile handset.

Java ME

16 Java Jazz Up Nov-07

JBoss Seam : Stitching JSF and EJB3
Open source, and developed under the

auspices of JBoss, Seam is a component
framework that focuses to deliver full-featured
JEE 5 applications in a lightweight code base
i.e. requiring only a fraction of the code of
regular JEE applications.

JBoss Seam is a robust JEE 5 framework
that replaces the traditional way to develop the
applications with some clever architecture and
techniques. With Seam, JEE 5 and EJB3, seems
to go a long way with their focus on the
lightweight Java support and reducing the code
bloat issues, which has been haunting the
developers for a long time.

Although the specifications for JEE 5 are still
not yet finalized, there is already a framework
available. Seam being built on top of JEE 5 and
EJB3 tries to further reduce the code required
to build a functional application. Seam tries to
put the new design patterns to resolve out the
evergreen problems that haunt the
development of the J2EE 1.4 applications,
especially those concerned with the web-based
user interface and demanding the EJBs at the
back-end. This required a lot of tedious coding.
Though most of the IDE tools tries to reduce
the the developer’s role in the code generation
especially while coding the EJB interfaces and
the required helper classes, still the developer
faces the huge code base to manage and
maintain.

Let’s give a quick glance to the J2EE
application development, and see how JBoss
Seam proves to be a natural progression
beyond JEE 5.

The classic framework

To get familiar with the functionality of the JBoss
Seam, it is vital to overview the role of the
classic application framework, which orients
around the two distinct phases:

1 creation of the user interface
2 creation of the application logic

Together with JEE 5, JBoss Seam attempts
to simplify these two phases. Always the

business logic code is required to the develop
the code individually and it cann’t be automated.
Though, most of the application’s tedious code
orients around creating the UI to handle the
user interactions and to provide the support
for the code to arrange data back and forth
between UI components and the application
components. Seam has made a superb attempt
to eliminate the bulkiness of such required
codes. Figure 1 i l lustrates the classic
framework. Much of this classic architecture still
applies today – even to JEE 5 and JBoss Seam.

Figure 1: The classic framework

Figure 1 depicts the classic UI framework along
with the application flow. The UI framework
provides the components that allows the
developers to easily create and maintain a layout
in their initialization code. At the runtime, this
UI framework constructs the GUIs out of these
components, and allows the user to interact
with the system. At well-defined points of the
user interaction, events are fired from the
application components. Being an application
developer, you just need to write the code to
handle these events. This is sometimes referred
as the “events-driven programming”.

Java Server Faces and JEE 5

Officially sun is going to include Java Server
Faces (JSF) as its built-in UI framework with
the release of its upcoming JEE 5 specifications.
JSF has implemented the classic UI features as
its UI framework architecture to meet the
presentation purpose. However it needs to

 Nov-07 Java Jazz Up 17

meet the runtime challenges over a network to
provide the actual user interface i.e. a web-
based user interface. Figure 1

There has been made great efforts to
provide the componentized user interfaces over
the web to reduce the response time in reloading
a changed UI. However to present a
componentized user interface over the web is
still challenging as it demands the framework
to utilize the stateless HTTP protocol to render
the changing UIs. However, every time the end
user gets each UI as a separate dynamically
generated web page and every time it requires
the web browsers to interact with the UIs.
Though, stateless HTTP protocol forces the
actual rendered UI to stay loosely coupled with
the code generating those UI. Classic GUI APIs
like Swing demands a tightly coupling of the
application code with the GUI. However, Unlike
Swing, JSF decouples the presentation code at
the expense of sending a completely new web
page over the network.

Figure 2 illustrates one of the core features
of the JSF framework i.e. loose coupling between
the networked UI framework and the code that
renders the UI. JSF provides a flexibility to use
a number of render kits to render different user
interfaces. For instance - the most frequently
used render kit is the HTML render kit.

Figure 2: The rendering framework

In Figure 2, notice the gradual change made
to the classic UI architecture to get the new
rendering framework. Only there has been
introduced a little change in writing the
application code. Still the application handles

the UI component events, co-ordinates the
access of data and modifies the state of UI
components.

On the other hand, there is a little observable
difference from the application developer’s
perspective that lies between classic tightly
coupled GUI frameworks and the contemporary
loosely-coupled web-based component UI
frameworks.

However with the release of JEE 5 – It will be
simpler to create the JEE applications almost as
simple as coding the Swing applications. In JEE
5, Most of the concerned changes with the JSF
specifications will orient around to provide a rich
set of UI components via JSP presentation
technology to create highly flexible web-based
user interfaces.

JSF: Facing Code-bloat issue

Achieving the desirable illusion of tightly
coupled UI components cause the application
developers to preserve the undesirable side-
effect of code bloat when the JSF works along
with JEE. Most of the typical JEE 5 applications
developed with JSF and JSP perform few tasks
repeatedly i.e. executing a code performing the
tasks – again and again. There are few of the
tasks that are retrieved as a part of Model
section of the developed MVC application using
different UI, few of such frequently occurring
tasks are:

· to create backing beans that bind to JSF
UI components

· to create the application objects for
application logic

· to shuffle the data between the backing
beans and the application objects

· to co-ordinate the data transfer between
the JSF UI components and the backing
beans

· to persist the application objects, perhaps
through yet another set of objects used
for persistence

Figure 3 illustrates some of these interactions.
The thin arrows illustrate the source of the

JBoss Seam : Stitching JSF and EJB3

18 Java Jazz Up Nov-07

tedious code often found in the JEE and JSF
coding.

Figure 3: JSF and JSP

As the number of UI elements increases, the
amount of the code performing the tedious task
also increases. Much of the tedious code is
generated as a result of the deficiency lying with
the inefficient combination of the JEE and JSF.
Such deficiencies are concerned with the issues
like the UI components are not directly usable
as application objects, similarly the application
objects are not enough capable to persist
information.

Additionally, JSF applications can not
completely escape from the stateless nature of
the HTTP protocol. Still it needs the alternative
mechanisms, such as cookies or HTTP sessions
to maintain the application state between more
than one web page. This adds as a major
contributor leading to the JEE code-bloat.

Lets Explore the role of JBoss
Seam in reducing the coding
surface

Figure 4 shows how JBoss Seam reduces the
potential coding surface. Apart from the
component layout code, Seam enables the
developers just to code the needed business
logic.

Figure 4: How JBoss Seam fights code-bloat

Seam achieves the code reduction via employing
the modern framework techniques like to
automate the code generation process(based
on compile time inspection of the application
objects), to intercept dynamically and to provide
the behavioral modification at runtime. Much of
what JBoss Seam does is completely invisible
to the application developers however still it
requires the developers to know a lot about
the JEE 5 runtime environment and JSF in
particular.

Systematic code reduction
with Seam

JBoss Seam has eliminated a lot of coding
part that developers need to support
previously. Seam exactly identified the earlier
deficiencies lying with the JEE and JSF
combination. Now seam has reduced the task
of developers, they no longer have to create
the JSF backing beans and write code to co-
ordinate the transferring data between JSF
components and the backing beans. Seam
generates the JSF backing beans and co-
ordinates the data shuttling between these
beans and the application object. Even the
developers no longer need to write the object
persistence code for their application objects
as Seam itself generates and manages them.
Moreover, Seam developers can even :

1 use their application object as their UI
object

JBoss Seam : Stitching JSF and EJB3

 Nov-07 Java Jazz Up 19

2 use their application object as their
persistent object

Now, the developers only need to create the
set of core objects i.e. application objects.

JBoss Seam generates and manages a huge
amount of code itself to flexibly control the
behaviour of the entire code at the run times.
Seam achieves this feature through a very rich
set of annotations as Seam is consistent with
the heavy use of annotations in JEE 5.
Annotations are there to declaratively control
the things like how to generate and manage
the application code. Though the code
generated and managed by JBoss Seam is not
as flexible as tedious hand-crafted code written
by the developers. But then, if we consider the
amount of the code that the developers no
more need to write, then the trade-off in
robustness and maintainability may justify the
reduced flexibility.

Seam with new
conversational context

JBoss Seam has highly reduced the tedious
coding required to manage the states between
the discrete UI pages. Seam achieves this by
providing a conversational context for
maintaining application level attributes. Seam
allows a conversation to maintain over many
HTTPconnections.

Now with seam application developers just
need to declare an application object to maintain
it in the conversation scope and Seam ensures
to make the instance available throughout the
conversation. It just requires to specify - when
a conversation begins and when it should end.

Conversation implementation is a nice feature
added to the JBoss Seam. This provides the
ability to track and manage multiple concurrent
conversations from the same user.

Seam’s Support for a myriad
of persistence alternatives

Figure 4 illustrates the role of JBoss Seam

in managing persistence. Just it requires to add
the appropriate annotations to the application
object, and further Seam co-ordinates the
required generation of code and the runtime
interceptions.

For the actual persistence work Seam either
uses EJB 3 CMP with a support in JEE 5 (i.e.
currently known as Glassfish Server) or the
most popular ORM i.e. Hibernate.

Figure 5 i l lustrates the most suitable
persistence alternatives for JBoss Seam i.e. –
JBoss Seam can use EJB 3 CMP to persist the
application object.

Figure 5: Persistence alternatives for JBoss
Seam

Now with Seam, Developers need not to
develop any additional code to support this.
Just they can use an entity bean for their
application objects. This style of persistence is
perfect for application running inside a JEE 5
container – such as the JBoss Application
Server.

Seam’s flexibility to adapt the
light-weight development
environment

Now with Jboss Seam you can keep your
application lightweight, and can rather do
without any EJBs, as the Seam provides the

JBoss Seam : Stitching JSF and EJB3

20 Java Jazz Up Nov-07

developers with an EJB-free solution. Developers
can use Hibernate to persist the application
objects. JBoss Seam supports transactions with
Hibernate when an application runs inside a JEE
5 container. Even the developers can use
Jboss’s configurable stand-alone embeddable
EJB 3 container, which is highly compatible with
JBoss Seam in providing the run time support
to the applications.
Now the developers have chances to use
Hibernate without worrying to run the
application inside a full-blown JEE 5 server, as
they have the flexibility to use the JBoss
microcontainer along with its transactional
support. And it stil l run in a Java SE
environment. This brings the light-weightness
to the development environment.

This provides a set of diverse variety to the
developers along with the multiple choices
enabling it to adapt to different production
scenarios. Once tested, the application code
does not need to be modified while moving from
one environment to the next. It requires only
the minor changes in the configuration.

JBoss Seam : Stitching JSF and EJB3

 Nov-07 Java Jazz Up 21

Plugins are used to interact with a host
application to provide a specific task on demand.
Maven provides a plugin execution framework
and rest of the work is done by the plugins i.e.
real action is performed by the plugins like
compiling code, creating jar files, creating war
files, testing the code, creating project
documentation etc. For Instance… Clean is one
of the simplest maven 2.0 plugins available.
When we run “mvn clean”, the “clean” goal is
executed and the target directory is removed.

Here, we are providing a list of core and other
plugins below:

Plugin Description
Core plugins Corresponding to default core

phases
clean Clean up after the build.
compiler Compiles Java sources.
deploy Deploy the built artifact to the

remote repository.
install Install the built artifact into

the local repository.
resources Copy the resources to the

output directory for including
in the JAR.

site Generate a site for the
current project.

surefire Run the Junit tests in an
isolated classloader.

verifier Verifies the existence of
certain conditions.

Packaging types Related to packaging
/tools respective artifact
types.

ear Generate an EAR from the
current project.

ejb Build an EJB from the current
project.

jar Build a JAR from the current
project.

rar Build a RAR from the current
project.

war Build a WAR from the current
project.

Reporting Related to generating
reports

changelog Generate a list of recent
changes from your SCM.

changes Generate a report from issue
tracking or a change
document.

checkstyle Generate a checkstyle report.
clover Generate a Clover report.
doap Generate a DOAP file from a

POM.
docck Documentation checker

plugin.
javadoc Generate Javadoc for the

project.
jxr Generate a source cross

reference.
pmd Generate a PMD report.
project-info- Generate a standard project
reports reports.
surefire-report Generate a report based on

the results of unit tests.

Tools Tools available through
Maven by default

ant Generate an Ant build file for
the project.

antrun Run a set of ant tasks from a
phase of the build.

archetype Generate a skeleton project
structure from an archetype.
assembly Build an assembly of
sourcesand/or binaries.

dependency Dependency manipulation and
analysis.

enforcer Environmental constraint
checking, User Custom Rule
Execution.

gpg Create signatures for the
artifacts and poms.

help Get information about the
working environment for the
project.

invoker Run a set of Maven projects
and verify the output

one A plugin for interacting with
legacy Maven 1.x repositories

Maven 2 Plug-in

22 Java Jazz Up Nov-07

and builds.
patch Use the gnu patch tool to

apply / patch files to source
code.

plugin Create a Maven plugin
descriptor for any Mojo’s found
in the source tree, to include
in the JAR.

release Release the current project
remote-resources Copy
remote resources to the
output directory for inclusion in
the artifact.

repository Plugin to help with repository-
based tasks.

scm Generate a SCM for the current
project.

source Build a JAR of sources for use
in IDEs and distribution to the
repository.

IDEs Plugins that simplify
integration with IDEs

eclipse Generate an Eclipse project
file for the current project.

idea Create/update an IDEA
workspace for the current
project.

Maven2 Plug-in

 Nov-07 Java Jazz Up 23

Tomahawk Tags
Tomahawk tags are the collection of standard

components with extended functionality and
supports all the existing JSF components with
additional sets of functionality. Some tomahawk
tags are described in the subsequent sections.

1. Tomahawk document tag

This tag is used to embed whole document
into the jsp page. It is equivalent to the HTML
<html> tag. We can use this tag in place of
<html> tag in our JSP page. It has only one
attribute “state” that is used to specify the
state stored by this component.

Code Description :

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>
 <t:document>
<head>
<meta http-equiv=”Content-Type”
 content=”text/html; charset=iso-8859-1">
<title>t:document example</title>
</head>
<body >
<h:form>
<t:outputText value=”The document tag
 is equivalent to HTML <html> tag.”/>
</h:form>
</body>
</t:document>
</f:view>

Rendered Output:

2. Tomahawk documentHead tag

This tag is used to encapsulate the head of the
document. It is equivalent to the HTML <head>
tag. We can use this tag in place of <head>
tag in our JSP page. It has only one attribute
“state” that is used to specify the state stored
by this component.

Code Description :

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>
<t:document>
<t:documentHead>
<meta http-equiv=”Content-Type”
content=”text/html;charset=iso-8859-1">
<title>t:documentHead example</title>
</t:documentHead>
<body >
<h:form>
<t:outputText value=”The documentHead tag
is equivalent to HTML <head> tag.”/>
</h:form>
</body>
</t:document>
</f:view>

24 Java Jazz Up Nov-07

Rendered Output:

3. Tomahawk documentBody tag

This tag is used to encapsulate the body of
the document. It is equivalent to the HTML
<body> tag. We can use this tag in place of
<body> tag in our JSP page. It has one attribute
“state” that is used to specify the state stored
by this component.

Code Description:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<f:view>
<t:document>
<t:documentHead>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:documentBody example</title>
</t:documentHead>
<t:documentBody >
<h:form>
<t:outputText value=”The documentBody tag
is equivalent to HTML <body> tag.”/>
</h:form>
</t:documentBody>
</t:document>
</f:view>

Rendered Output:

4. Tomahawk saveState tag

This tag is useful in persisting the backing
bean and its properties longer than request
scope but shorter than session scope by saving
the state with the component tree. Traditionally,
state is saved with the help of HttpSession
object. MyFaces works differently without the
use of HttpSession object. All state information
of the current view and the model beans are
encoded automatically with the client response
and get restored at the next client request. If
you want to save the whole bean then it can
also be done with this tag just specifying the
name of bean in EL expression in the value
attribute. Same steps are followed in saving
and restoring the whole bean as in the case of
properties of bean. If you want the value of a
bean property or the bean itself to be able to
get saved and restored, it must implement the
Serializable interface.

Code Description :

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>
<t:document>
<t:documentHead>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">

Tomahawk Tags

 Nov-07 Java Jazz Up 25

<title>t:saveState example</title>
</t:documentHead>
<t:documentBody >
<t:saveState id=”state1"
value=”#{Bean.text1}”/>
<t:saveState id=”state2"
value=”#{Bean.text2}”/>
<t:saveState id=”state3"
value=”#{NextBean}”/>
<h:form>
<t:outputText value=”Title1"/>
<t:inputText id=”it1" value=”#{Bean.text1}”
/></p>
<t:outputText value=”Title2"/>
<t:inputText id=”it2" value=”#{Bean.text2}”
/>
</h:form>
</t:documentBody>
</t:document>
</f:view>

5. Tomahawk inputDate tag

This tag is useful in creating the component to
input the date. This component can be of
various types. We can create this component
to input time only or date only or both. Time
can also be supplied in12 hour or 24 hour
format. The time can also be set according to
the supplied time zone. The popup calendar can
also be rendered if needed. We can also use
CSS and java script to make it useful according
to our requirement.

Code Description :

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>
<t:document>
<t:documentHead>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:inputDate example</title>
<style type=”text/css”>
<!—
.highlight { background-color: #A8D1E8;

color:blue;}
—>
</style>
</t:documentHead>
<t:documentBody >
<h:form>
<t:inputDate id=”date1" /></p>
<t:inputDate id=”date2" opupCalendar=”true”
/> </p>
<t:inputDate id=”date3" type=”time”/></p>
<t:inputDate id=”date4" type=”date”/></p>
<t:inputDate id=”date5" type=”short_time”
/></p>
<t:inputDate id=”date6" type=”both”/></p>
<t:inputDate id=”date7" type=”full”/></p>
<t:inputDate id=”date8"
emptyMonthSelection=”Select Month”
type=”date” popupCalendar=”true”
onmouseover=”this.className=’highlight’”
onmouseout=”this.className=’normal’”/>
</p>
<t:inputDate id=”date9" type=”time”
ampm=”true”
emptyAmpmSelection=”AM/PM” />
</h:form>
</t:documentBody>
</t:document>
</f:view>

Rendered Output

Tomahawk Tags

26 Java Jazz Up Nov-07

6. Tomahawk htmlTag tag

This tag is used to use html tag for its child
component. This provides “value” attribute to
specify the name of the html tag to be used.
For example, if we want to make any string as
bold then enclose it within <t:html> tag and
set its value as “b” because in html to make
any character bold we use tag. If we don’t
provide any value to the value attribute then all
its child component are rendered but no html
tag is applied on them.

Code Description :

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<f:view>
<t:document>
<t:documentHead>
<meta http-equiv=”Content-Type”
content=”text/html;
charset=iso-8859-1">
<title>t:htmlTag example</title>
</t:documentHead>
<t:documentBody >
<h:form>
<t:htmlTag value=”h1">t:htmlTag Example
</t:htmlTag>
<t:htmlTag value=”b”><i>Bold & Italic font
</i></t:htmlTag>
<t:htmlTag value=”br”/>
<t:htmlTag value=”b” rendered=”false” >
Bold property will not be applied here.
</t:htmlTag>
</h:form>
</t:documentBody>
</t:document>
</f:view>

Rendered Output :

7. Tomahawk dataList tag

This tag is like dataTable tag but the difference
between the two is that it does not render a
table. In this tag the data rows are controlled
and rendered by the use of “layout” attribute.
It supports three layouts “simple”,
“unorderedList”, “orderedList”. The default value
is simple. When “simple” is used the items are
rendered normally, when “unorderedList” is used
the list is rendered as an HTML unordered list
and in the case of “orderedList”, the list is
rendered as an HTML ordered list.

Code Description :

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<html>
<head>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:dataList example</title>
<style type=”text/css”>
<!—
.dataListStyle {
color: green;
background-color: #D0E6E0;
padding: 3;
}
—>
</style>

Tomahawk Tags

 Nov-07 Java Jazz Up 27

</head>
<body >
<f:view>
<h:form id=”form1" >
<t:dataList id=”dt1"
value=”#{TableBean.perInfoAll}”
var=”item” layout=”orderedList” first=”0"
rows=”4" dir=”LTR”
itemStyleClass=”dataListStyle”>
<t:outputText value=”#{item.firstname}”>
</t:outputText>

<f:verbatim>
</f:verbatim>
<t:outputText value=”#{item.lastname}”>
</t:outputText>
<f:verbatim>
</f:verbatim>
<t:outputText value=”#{item.phone}”>
</t:outputText>
</t:dataList>
</h:form>
</f:view>
</body>
</html>

TableBean.java :

public class TableBean {

private perInfo[] perInfoAll = new perInfo[]{
new perInfo(101, “SUSHIL”,”KUMAR”,
“9891444444”, “Delhi”, 111111),
new perInfo(102, “CHANDAN”,”KUMAR”,
“9911666666”, “Bombay” ,222222),
new perInfo(103, “RAVI”,”KANT”,
“9313888888”, “New York”, 333333),
new perInfo(104, “ANDY”,”ROBERTSON”,
“9911222222”, “Florida” , 444444),
new perInfo(105, “SHAUN”,”MARTIN”,
“9313999999”, “Los Angeles”, 555555),
};
public perInfo[] getperInfoAll() {
return perInfoAll;
}

public class perInfo {
int id;
String firstname;
String lastname;
String phone;
String city;

int pin;

public perInfo(int id, String firstname,String
lastname, String phone, String city, int pin) {
this.id = id;
this.firstname = firstname;
this.lastname = lastname;
this.phone = phone;
this.city = city;
this.pin= pin;
}

public int getid() {
return id;
}

public String getfirstname() {
return firstname;
}

public String getlastname() {
return lastname;
}

public String getphone() {
return phone;
}

public String getcity() {
return city;
}

public int getpin() {
return pin;
}

}

}

Tomahawk Tags

28 Java Jazz Up Nov-07

Rendered Output:

8. Tomahawk div tag

This tag is used to place an html div around its
children. So instead of using html div tag we
can use JSF tomahawk’s own div tag. In this
example, div tag uses style class “divStyle” that
will be effective on the particular area captured
by div tag.

Code Description:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<html>
<head>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:div example</title>
<style type=”text/css”>
<!—
.divStyle {

text-align: right;
background-color: #D0E6E0;

 padding: 3;
font-weight:bold;

}
—>
</style>
</head>
<body >

<f:view>
<h:form id=”form1" >
<t:div id=”div1" styleClass=”divStyle”>
<t:commandLink value=”HOME”
action=”welcome”/> |
<t:commandLink value=”CONTACT”
action=”welcome”/> |
<t:commandLink value=”ABOUT”
action=”welcome”/>
</t:div>
</h:form>
</f:view>
</body>
</html>

Rendered Output:

Tomahawk Tags

 Nov-07 Java Jazz Up 29

Apache Struts: A brief Introduction

Apache Struts is an open-source framework
used to develop Java web application. Originally
developed by the programmer and author Craig
R. McClanahan was later taken over by the
Apache Software Foundation in 2002. Struts
have provided an excellent framework for
developing application easily by organizing JSP
and Servlet and basic java code. Strut1 with all
standard Java technologies and packages of
Jakarta assists in creating an extensible
development environment. However, with the
growing demand of web applications, Strut 1
does not stand firm and needs to be changed
with the increasing demand. This led to the
creation of Strut2, which are more users friendly
with the features like Ajax, rapid development
and extensibility.

Struts is a well-organized framework based
on MVC architecture. In Model-View-Controller
Architecture, Model refers to the business or
database code, the View represents the UI
design code and the Controller refers to the
navigational code. All these together makes
Struts an essential framework for building Java
application. But with the development of new
and lightweight MVC based frameworks like
Spring, Stripes and Tapestry, it becomes
necessary to modify the Struts framework. So,
the team of Apache Struts and another J2EE
framework, WebWork of OpenSymphony joined
hand together to develop an advanced
framework with all possible developing features
that will make it developer and user friendly.

Struts 2 has combined features of Struts
1.x and WebWork 2 projects that advocates
higher level application by using the architecture
of WebWork2 with the features including a
plugin framework, a new API, Ajax tags etc. So
the Struts communities and the WebWork team
brought together several special features in
WebWork2 to make it more advance in the Open
Source world. Later the name of WebWork2
has changed to Struts2. Hence, Apache Strut
2 is a dynamic, extensible framework for a
complete application development from building,
deploying and maintaining.

Why Struts 2

The new version Struts 2.0 is a combination
of the Sturts action framework and Webwork.
According to the Struts 2.0.1 release
announcement, some key features are:
Why Struts 2

1 Simplified Design - Programming the
abstract classes instead of interfaces is
one of design problem of struts1
framework that has been resolved in
the struts 2 framework. Most of the
Struts 2 classes are based on interfaces
and most of its core interfaces are HTTP
independent. Struts 2 Action classes
are framework independent and are
simplified to look as simple POJOs.
Framework components are tried to
keep loosely coupled.

2 Simplified Actions - Actions are
simple POJOs. Any java class with
execute() method can be used as an
Action class. Even we don’t need to
implement interfaces always. Inversion
of Control is introduced while
developing the action classes. This
makes the actions to be neutral to the
underlying framework.

3 No more ActionForms - ActionForms
feature is no more known to the
struts2 framework. Simple JavaBean
flavored actions are used to put
properties directly. No need to use all
String properties.

4 Simplified testability - Struts 2
Actions are HTTP independent and
framework neutral. This enables to test
struts applications very easily without
resorting to mock objects.

5 Intelligent Defaults - Most
configuration elements have a default
value which can be set according to the
need. Even there are xml-based default
configuration files that can be
overridden according to the need.

Struts2

30 Java Jazz Up Nov-07

6 Improved results - Unlike
ActionForwards, Struts 2 Results
provides flexibility to create multiple type
of outputs and in actual it helps to
prepare the response.

7 Better Tag features - Struts 2 tags
enables to add style sheet-driven
markup capabilities, so that we can
create consistent pages with less code.
Struts 2 tags are more capable and
result oriented. Struts 2-tag markup
can be altered by changing an
underlying stylesheet. Individual tag
markup can be changed by editing a
FreeMarker template. Both JSP and
FreeMarker tags are fully supported.

8 Annotations introduced: Applications
in struts 2 can use use Java 5
annotations as an alternative to XML
and Java properties configuration.
Annotations minimize the use of xml.

9 Stateful Checkboxes - Struts 2
checkboxes do not require special
handling for false values.

10 QuickStart - Many changes can be
made on the fly without restarting a web
container.

11 Customizing controller - Struts 1
lets to customize the request processor
per module, Struts 2 lets to customize
the request handling per action, if
desired.

12 Easy Spring integration - Struts 2
Actions are Spring-aware. Just needs to
add Spring beans.

13 Easy plugins - Struts 2 extensions
can be added by dropping in a JAR. No
manual configuration required.

14 AJAX support - The AJAX theme
gives interactive applications a significant
boost.

The framework provides a set of tags to help
you ajaxify your applications, even on Dojo.

The AJAX features include:
• AJAX Client Side Validation
• Remote form submission support

(works with the submit tag as well)
• An advanced div template that provides

dynamic reloading of partial HTML
• An advanced a template that provides

the ability to load and evaluate
JavaScript remotely

• An AJAX-only tabbed Panel
implementation

• A rich pub-sub event model
• Interactive auto complete tag
• Request Lifecycle in Struts 2 applications

Request for a resource by the user is
processed in the sequence given below:

1 User Sends request: User sends a
request to the server for some
resource.

2 FilterDispatcher determines the
appropriate action: The
FilterDispatcher looks at the request and
then determines the appropriate Action.

3 Interceptors are applied: Interceptors
configured for applying the common
functionalities such as workflow,
validation, file upload etc. are
automatically applied to the request.

4 Execution of Action: Then the action
method is executed to perform the
database related operations like storing
or retrieving the data from database.

5 Output rendering: Then the Result
renders the output.

6 Return of Request: Then the request
returns through the interceptors in the
reverse order. The returning request
allows us to perform the clean-up or
additional processing.

7 Display the result to user: Finally the
control is returned to the servlet
container, which sends the output to the
user browser.

Struts2

 Nov-07 Java Jazz Up 31

Struts 2 Architecture

The following diagram depicts the
architecture of Struts 2 Framework. Following
diagram shows that the initial request goes to
the servlet container, which is then passed
through standard filer chain.

The filter chain includes:

1 Action ContextCleanUp filter: The
ActionContextCleanUp filter is optional
and it is useful when integration has to
be done with other technologies like
SiteMash Plugin.

2 FilterDispatcher: Next the
FilterDispatch is called, which in turn
uses the ActionMapper to determine
weather to invoke an Action. If the
action is required to be invoked, the
FilterDispatcher delegates the control to
the ActionProxy.

3 ActionProxy: The ActionProxy takes
the help from Configuration Files
manager, which is initialized from the
struts.xml. Then the ActionProxy
creates an ActionInvocation, which
implements the command pattern. The
ActionInvocation process invokes the
Interceptors (if configured) and then
invokes the action. The ActionInvocation
looks for proper result. Then the result
is executed, which involves the
rendering of JSP or templates.

Then the Interceptors are executed again in
reverse order. Finally the response returns
through the filters configured in web.xml file. If
the ActionContextCleanUp filter is configured,
the FilterDispatcher does not clean the
ThreadLocal ActionContext. If the
ActionContextCleanUp filter is not present then
the FilterDispatcher will cleanup all the
ThreadLocals present.

Download Struts 2.0 and install Blank
application on the Tomcat server

Download the Struts 2.0 at http://
struts.apache.org/download.cgi. Extract the
downloaded struts distribution struts-2.0.6-
all.zip into your favorite directory.

To install the struts blank application copy
“struts2-blank-2.0.6” from “<extracted
directory>\struts-2.0.6-all\struts-2.0.6\apps”
into the webapps folder of the tomcat directory.

Struts2

32 Java Jazz Up Nov-07

Tomcat will automatically deploy the application.
To test the struts-blank application type http:/
/localhost:8080/struts2-blank-2.0.6 in the
browser and the struts-blank application get
displayed in your browser window.

Struts 2 Hello World - Developing Hello
World Application

In this section we will develop Hello World
based on the Struts 2 Framework. Our Struts
2 Hello World application is the first step
towards developing applications based on the
Struts 2 Framework. It covers the basic steps
like creating directory structure, developing
build.xml file to build the application using ant
build tool. Then we will write JSP, Java and
configuration files required for the application.

Creating directory structure and Ant build
file for the project

Step1: Extract struts 2 download and copy
struts2-blank-2.0.6.war (If you are using latest
version of struts 2 then it may be different for
you) to your tomcat’s webapps directory.
Rename struts2-blank-2.0.6 to struts2example
and unzip it in the tomcat’s webapps directory.
Start tomcat and type http://localhost:8080/
struts2example/ into your browser. Now, you
have successfully installed struts 2 blank
application to start with.

Step 2: Now delete the content of
struts2example\WEB-INF\src and
struts2example\WEB-INF\classes directories, as
we don’t need these files that comes with struts
2 blank application.

Step 3: Create build.xml file in the
struts2example\WEB-INF\src and paste the
following content in the build.xml file.

<project name=”struts2example” basedir=”../
” default=”all”>
<!— Project settings —>
<property name=”project.title”
value=”JavaJazzUp Struts 2"/>
<property name=”project.jar.file”
value=”struts2example.jar”/>
<path id=”class.path”>
<fileset dir=”lib”>
<include name=”**/*.jar”/>
</fileset>
<fileset dir=”libext”>
<include name=”**/*.jar”/>
</fileset>
</path>
<!— Classpath for Project —>
<path id=”compile.classpath”>
<pathelement path =”lib/commons-
digester.jar”/>
<pathelement path =”lib/commons-
digester.jar”/>
<pathelement path =”lib/struts.jar”/>
<pathelement path =”libext/servlet-api.jar”/>
<pathelement path =”libext/catalina-ant.jar”
/>
<pathelement path =”classes”/>
<pathelement path =”${classpath}”/>
</path>
<!— Check timestamp on files —>
<target name=”prepare”>
<tstamp/>
<copy file=”src/struts.xml”
todir=”src/classes”/>
</target>
<!— Copy any resource or configuration files
—>
<target name=”resources”>
<copy todir=”src/classes”
includeEmptyDirs=”no”>
<fileset dir=”src/java”>
<patternset>
<include name=”**/*.conf”/>
<include name=”**/*.properties”/>
<include name=”**/*.xml”/>
</patternset>
</fileset>
</copy>
 </target>

Struts2

 Nov-07 Java Jazz Up 33

<!— Normal build of application —>
<target name=”compile”
depends=”prepare,resources”>
<javac srcdir=”src” destdir=”src/classes”
 debug=”true”
debuglevel=”lines,vars,source”>
<classpath refid=”class.path”/>
</javac>
<jar jarfile=”lib/${project.jar.file}”
basedir=”src/classes”/>
</target>
<!— Remove classes directory for clean build
—>
<target name=”clean” description=”Prepare
for clean build”>
<delete dir=”classes”/>
<mkdir dir=”classes”/>
</target>
<!— Build Javadoc documentation —>
<target name=”javadoc”
description=”Generate JavaDoc API docs”>
<delete dir=”./doc/api”/>
<mkdir dir=”./doc/api”/>
<javadoc sourcepath=”./src/java” destdir=”./
doc/api”
classpath=”${servlet.jar}:${jdbc20ext.jar}”
packagenames=”*” author=”true”
private=”true” version=”true”
windowtitle=”${project.title}API
Documentation”
doctitle=”<h1>${project.title}Documentation
(Version ${project.version})</h1>”
bottom=”Copyright © 2002">
<classpath refid=”compile.classpath”/>
</javadoc>
</target>
<!— Build entire project —>
<target name=”project”
depends=”clean,prepare,compile”/>
<!— Create binary distribution —>
<target name=”dist” description=”Create
binary distribution”>
<mkdir dir=”${distpath.project}”/>
<jar jarfile=”${distpath.project}/
${project.distname}.jar”
basedir=”./classes”/>
<copy file=”${distpath.project}/
${project.distname}.jar”
todir=”${distpath.project}”/>
<war basedir=”../”
warfile=”${distpath.project}/

${project.distname}.war”webxml=”web.xml”>
<exclude name=”${distpath.project}/
${project.distname}.war”/>
</war></target>
<!— Build project and create distribution—>
<target name=”all” depends=”project”/>
 </project>

Step 4: Create directory libext under the
struts2example\WEB-INF\ and copy latest
Servlets api jar (in our case servlet-api.jar)
file over there. This library file will be used to
compile Servlets in our application.

Step 5: Now create directories java and
classes under struts2example\WEB-INF\src.
The directory struts2example\WEB-
INF\src\java will be used to put all the java
sources file and directory
struts2example\WEB-INF\src\classes will be
used by ant build utility to store compiled
java files.

Struts2

34 Java Jazz Up Nov-07

Writing JSP, Java and Configuration for
Hello World Application

Now, we will write JSP, Java and required
configuration files for our Struts 2 Hello World
application. In struts 2, struts.xml is used to
configure the applications. Our application is
very simple application that displays Hello World
message along with current date and time of
the server. When the user requests for the
resource then this request is sent to the struts
framework. Then struts framework sends the
input to the action class (in our case
Struts2HelloWorld.java) and selects the
resource “/pages/HelloWorld.jsp” to render as
response to the user. In this example we have
to develop three parts view, Action class and
mapping (struts.xml) to couple action and page.

Developing View:

This page is used to display the result on
the browser. The HelloWorld.jsp is view part
of our application. Create “HelloWorld.jsp” in
the struts2example\pages directory and add
the following content:

<%@ taglib prefix=”s” uri=”/struts-tags” %>
<html>
<head>
<title>Struts 2 Hello World Application!
</title>
</head>
<body>
<h2><s:property value=”message” /></h2>
<p>Current date and time is:
<s:property value=”currentTime” />
</body>
</html>

The line <%@ taglib prefix=”s” uri=”/struts-
tags” %> declares data tag library of the struts.
The struts data tag is used to display the
dynamic data. The tag <s:property
value=”message” /> and <s:property
value=”currentTime” /> calls the methods
getMessage() and getCurrentTime() respectively
of the Struts2HelloWorld action class and
merges the values with response.Developing

Action (to interact with Model):

Now create Struts2HelloWorld.java and saves
it to the “ struts2example\WEB-
INF\src\java\net\javajazzup” directory. This
action class creates the message to be displayed
on the screen. Here is the code of
Struts2HelloWorld.java:

Struts2HelloWorld.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.Date;

public class Struts2HelloWorld extends
ActionSupport {

public static final String MESSAGE = “Struts 2
Hello World”;

public String execute() throws Exception {
setMessage(MESSAGE);
return SUCCESS;
}
private String message;
public void setMessage(String message){
this.message = message;
}
public String getMessage() {
return message;
}
public String getCurrentTime(){
return new Date().toString();
 }
}

Developing Controller Configuration File:

Struts 2 uses the struts.xml file for
configuring the application. Create struts.xml
file and save it in the “struts2example\WEB-
INF\src” directory with the following content.

Struts2

 Nov-07 Java Jazz Up 35

<?xml version=”1.0" encoding=”UTF-8" ?>
<!DOCTYPE struts PUBLIC
“-//Apache Software Foundation//DTD Struts
Configuration 2.0//EN”
“http://struts.apache.org/dtds/struts-
2.0.dtd”>

<struts>
<constant
name=”struts.enable.DynamicMethodInvocation”
value=”false” />
<constant name=”struts.devMode”
value=”true” />
<package name=”javajazzup” namespace=”/
javajazzup “ extends=”struts-default”>
<action name=”HelloWorld”
class=”net.javajazzup.Struts2HelloWorld”>
<result>/pages/HelloWorld.jsp</result>
</action>
<!— Add actions here —>
</package>
<!— Add packages here —>
</struts>

The struts.xml file should be present in the
class path of the application. You can either
include it in the jar and place in the lib directory
of the application or place it in the classes
directory of the web application. In our
application we are using ant build tool, which is
including it in the jar file.

Building the application

I am assuming that you have already installed
ant build tool on your machine. Since we are
using the ant built tool, the building the
application is very easy. To build the application
open command prompt and go to “
struts2example\WEB-INF\src” directory of the
web application and issue the “ant” command.
The ant build tool will compile the java file and
create jar file “ struts2example.jar” into the lib
directory of your web application. Here is the
output of ant build tool:

C:\apache-tomcat-
5.5.23\webapps\struts2example\WEB-
INF\src>ant
Buildfile: build.xml
clean:
 [delete] Deleting directory C:\apache-
tomcat-5.5.23\webapps\struts2example\WE
B-INF\classes
 [mkdir] Created dir: C:\apache-tomcat-
5.5.23\webapps\struts2example\WEB-INF\
classes
prepare:
resources:
compile:
[javac] Compiling 1 source file to C:\apache-
tomcat-5.5.23\webapps\struts2ex
ample\WEB-INF\src\classes
[jar] Building jar: C:\apache-tomcat-
5.5.23\webapps\struts2example\WEB-INF
\lib\struts2example.jar
project:
all:
BUILD SUCCESSFUL
Total time: 4 seconds
C:\apache-tomcat-
5.5.23\webapps\struts2example\WEB-
INF\src>

Testing the application

To test the application start the tomcat
server and type http://localhost:8080/
struts2example/javajazzup/HelloWorld.action in
address bar and hit enter. It will display the
following figure:

Struts2

36 Java Jazz Up Nov-07

The application will display message “Struts
2 Hello World” along with current date and
time of the server.

How application works?

Here is the brief description on how Struts 2
Hello World Application works:

1. When the user sends a request for the url
http://localhost:8080/struts2example/
javajazzup/HelloWorld.action. The container
requests for the resource “HelloWorld.action”.
By default web.xml file of struts blank
application is configured to route all the
request for *.action through
org.apache.struts2.dispatcher.FilterDispatcher.
Here is the configuration from web.xml file:

<filter>
<filter-name>struts2</filter-name>
<filter-lass>
org.apache.struts2.dispatcher.FilterDispatcher
</filter-class>
</filter>
<filter-mapping>
<filter-name>struts2</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

2. Then the framework looks for the mapping
for the action “HelloWorld” and then framework
instantiates the appropriate class and calls the
execute method. In this case action class is
Struts2HelloWorld. Here is the configuration file
from struts.xml, which defines the action
mapping:

<action name=”HelloWorld”
class=”net.javajazzup.Struts2HelloWorld”>
<result>/pages/HelloWorld.jsp</result>
</action>

3. Then the execute method sets the
message and returns SUCCESS.

public String execute() throws Exception {
setMessage(MESSAGE);
return SUCCESS;
}

Then framework determines which page is to
be loaded if SUCCESS is returned. In our case
framework tells the container to load
HelloWorld.jsp and render the output.

In the struts 2 framework, Actions are used to
process the form and user request. The execute
method of the action returns SUCCESS,
ERROR, or INPUT value. Then based on these
values framework tells the container to load and
render the appropriate result.

 4. Container processes the HelloWorld.jsp
and generates the output.

 The output in the HTML format is sent to
the browser.

Struts2

 Nov-07 Java Jazz Up 37

Design Pattern
Structural Patterns are design patterns, which
describe the best possible ways to combine the
objects and classes forming a larger complex
structure in an easy manner. It deals with the
objects delegating responsibilities to other
objects. It is a simple way to design and realize
relationships between the entities.

In this article, we are discussing Decorator ,
Façade and Flyweight Design Patterns.

I. Decorator Design Pattern

This section deeply discusses the Decorator
design pattern, a kind of structural pattern.

In object-oriented programming, the decorator
pattern allows the developers to add new
behaviors to an existing functionality of an
object, dynamically.

The decorator pattern can be used whenever
there is a need to add some additional
functionality to an object or to the group of
objects. It provides a flexible alternative for sub-
classing to extend the functionality. This pattern
is also known as the “wrapper” design pattern
as it works by wrapping around the original
object to get a new “decorator” object.
Wrapping is typically achieved by passing the
original object as a parameter to the
constructor of the decorator, and then it is
ready to implement the new functionality.

Decorators are very much similar to subclassing
feature of an object-oriented programming. The
only difference is that, Subclassing adds
behavior at compile time where as a decorator
provides a new behavior at the runtime.

The UML diagram for this pattern in our
scenario looks something like this:

This UML diagram illustrates that the Decorators
should be abstract classes and the concrete
implementation should be derived from them
according to the requirement.

A decorator can be added or removed from an
object without realizing the client about any
changed occurred. It is a good idea to use a
Decorator in a situation where you want to
change the behavior of an object repeatedly
(by adding and subtracting functionality) during
runtime.

This dynamic behavior modification capability of
the decorators are useful for adapting objects
to new functionality without re-writing the
original object’s code.

The given design pattern shows the
implementation code of the decorated class.
In java, the code for a decorator class would
be something like this:

38 Java Jazz Up Nov-07

1. Log.java

public abstract class Log {
 public abstract void write(String log);
}

2. DatabaseLog.java

public class DatabaseLog extends Log {
 // Write to the Database
 public void write(String log){
 }
}

3. DecoratorLog.java

public abstract DecoratorLog extends Log {
 protected Log objLog;
 public DecoratorLog(Log objLog) {
 this.objLog = objLog;
 }
 public void write(String log){
 // Write to the Textfile
 objLog.write(log);
 }
}

4. DecoratorLogA.java

public class DecoratorLogA extends
DecoratorLog {
public DecoratorLogA(Log aLog) {
 super(objLog);
 }
 public void write(String log){
 // Decorator A behavior here
 objLog.write(String log);
 }
}

5. DecoratorLogB.java

public class DecoratorLogB extends
DecoratorLog {
public DecoratorLogB(Log aLog) {
 super(objLog);
 }
 public void write(String log){
 // Decorator B behavior here
 objLog.write(String log);
 }
}

In the given code, the method write(String
log) of the abstract class Log is extended by
the decorator class (DecoratorLog) and its
subclasses to add the new functionality (such
as write to the Textfile) to the method.

You can also define an interface in place of an
abstract class shown as:

Log.java

interface Log{
public void write(String log);
}

Once you have defined the interface, you can
implement its behaviors in any class e.g.

public class DatabaseLog implements Log
{public void write(String log){// Decorator A
behavior here}}

II. Facade Design Pattern

The Facade Pattern is an object-oriented
design pattern, which provides a simplified
interface to a larger body of code. This pattern
can make the task of accessing a large number
of modules much simpler by providing an
additional and a higher-level interface layer to
an entire subsystem of objects that makes the
subsystem easier to use. Thus, it hides the
complexities and the implementation of the
subsystem from clients.

A facade is an object that is placed between
the group of objects and its client who accesses
the system.

Facade Pattern : When to use

• When a way of hiding a complex system
within a simple interface is required.

• When lots of dependencies between
client and its implementation class of an
abstraction are required.

• When you want to make subsystems in
layers.

Design Pattern

 Nov-07 Java Jazz Up 39

Benefits:

• Provides simple interface to a complex
system without reducing options
provided by the system.

• Increases the reuse of classes by de-
coupling the interface from the
implementation

• Promotes weak coupling between the
subsystem and its clients

• Translates client requests to subsystem
that can fulfill request

Decorators and Facade evoke similar images in
building architecture, but in design pattern
terminology, the Facade is a way of hiding a
complex system inside a simpler interface,
whereas Decorator adds function by wrapping
a class.

The UML diagram for this pattern is
something like this:

This UML diagram shows that, there can be any
number of classes involved in this “Facade”
system. There is one client, one facade, and
multiple classes underneath the facade. In a
typical situation, the facade would have a limited
amount of actual code, making calls to lower
layers most of the time.

We can understand the facade pattern better
using a simple example. Let’s consider a Bank.
This bank has a service provider. In the bank,
there are a lot of accounts available e.g. saving
A/c, current A/c material, corporate A/c.

You, as a client want to access your different
accounts. You just have access to service
provider, who knows well about your accounts
information to update inquiries regarding your
account. Whatever you want, you ask the
service provider and he retrieves it out and tells
you on showing him the credentials.

Here, the service provider acts as the
facade, as he hides the complexities of the
Bank information system.

Let us see how the Bank example works.

Bank.java

public interface Bank {
 public Inquiries getInquiry(String
inquiryType); }// End of interface
}// End of interface

The Bank is an interface that only returns
Inquiries. The Inquiries are of three types as
discussed before:

SavingInquiries, CurrentInquiries and
CorporatetInquiries.

All these classes can implement the Inquiries
interface.

Let’s have a look at the code for one of the
Inquiry.

SavingInquiryBank.java

public class SavingInquiryBank implements
Bank { public Inquiries getInquiry () {//
write functionality of saving
accountSavingInquiries savinginquiries = new
SavingInquiries();return savinginquiries;} }//
End of class

Now let’s consider the facade ServiceProvider.

Design Pattern

40 Java Jazz Up Nov-07

ServiceProvider.java

public class ServiceProvider {
 /* Implement common method

public Inquiries getInquiry (String inquiryType)
{
public class ServiceProvider {
/* Implement common methodpublic Inquiries
getInquiry (String inquiryType)
{
 if (inquiryType.equals(“Saving”)) {
SavingInquiryBank bank = new
SavingInquiryBank ();SavingInquiries
savinginquiries =
(SavingInquiries)bank.getInquiry ();
return savinginquiries;
}
else if (inquiryType.equals(“Current”)) {
CurrentInquiryBank bank = new
CurrentInquiryBank ();
CurrentInquiries currentinquiries =
(CurrentInquiries)bank.getInquiry ();
return currentinquiries;
}
else {
CorporateInquiryBank bank = new
CorporateInquiryBank ();
CorporatetInquiries corporatetinquiries =
(CorporateInquiries)
bank.getInquiry ();
return corporatetinquiries;
}}// End of class

This is clear that the complex implementation
will be done by ServiceProvider himself. The
client will just access the ServiceProvider and
ask details of either saving, current or
corporate inquiries.

The client program can now create an object
of ServiceProvider class and call method
getInquiry() passing as parameter the type
of inquiry required. This can be done as
follows.

new
ServiceProvider().getInquiry(“Saving”);

Here is a simple code of the client program
that accesses this façade for getting saving
account information.

Client.java

public class Client {
 /*** to get saving inquiries*/
public static void main(String[] args) {
ServiceProvider provider = new
ServiceProvider().getInquiry(“Saving”);
} }
// End of class

III. Flyweight Design Pattern

The Flyweight is a software design pattern,
useful when there is the need for multiple
objects sharing some common information.

In programming languages, some times you may
need to generate a very large number of small
class instances to represent the entire system.
This is usually very memory consuming to keep
track of those objects. The Flyweight Pattern
reduces this problem and avoids the overhead
of large numbers of very similar class-objects.

The Flyweight design pattern provides an
approach for handling the classes in a system
where these classes are maintained through the
extrinsic data that is passed in as arguments.

When to use Flyweight Pattern:

• The application requires a large number
of objects.

• Storage costs are high and difficult to
maintain the number of objects.

• The application doesn’t depend on
object identity.

Benefits:

• Reduction of number of Objects to
handle.

• Reduction in memory and on storage
devices, if objects are persisted.

Design Pattern

 Nov-07 Java Jazz Up 41

The UML diagram for this pattern is like this:

This UML diagram shows that, Flyweights are
typically instantiated by a flyweight factory
that creates a limited number of flyweights and
sends them out, one at a time to its clients.

Clients don’t instantiate flyweights directly;
instead they get them from a Flyweight
Factory. The factory first checks to see if it
has a flyweight that fits specific criteria; if so,
the factory returns a reference to the flyweight.
If the factory can’t locate a flyweight for the
specified criteria, it instantiates one, adds it to
the pool, and returns it to the client.

Flyweight declares an interface through which
flyweights can receive and act on extrinsic state.
ConcreteFlyweight implements the Flyweight
interface and adds storage for intrinsic state, if
any in order to share an object.
FlyweightFactory creates and manages
flyweight objects.

We can understand the flyweight pattern better
using a simple example. Suppose, you want to
show a file system with folders to show the
directories or subdirectories, then you don’t
need to load all the files or directories at one
loading time. You may show the upper level
folders first. If the user clicks a folder, then
load its subdirectories and files. The shared
trigger is mouse-clicked. The composite pattern
may be combined to define the flyweight system.

Let us see an example of flyweight
pattern.

FlyweightIntr.java

interface FlyweightIntr {

 public String getName();
 public String getAddress();

}

The FlyweightIntr is an interface that
returns the name and address of the
employees based on their specific criteria
“division”.

FlyweightClient.java

import java.util.HashMap;
import java.util.StringTokenizer;
import java.util.Vector;

public class FlyweightClient {
 public static void main(String[] args) throws
Exception {

Vector empList = store();
FlyweightFactory factory =
FlyweightFactory.getInstance();

for (int i = 0; i < empList.size(); i++) {
StringTokenizer st = new StringTokenizer();
String division = st.nextToken();
FlyweightIntr flyweight =
factory.getFlyweight(division);

 // associate the flyweight
 // with the extrinsic data object.

VCard card = new VCard(name, flyweight);
card.print();
 }
 }
private static Vector store() {
 Vector v = new Vector();
 v.add(“North”);
 v.add(“South”);
 v.add(“North”);
 return v;
 }
}

Design Pattern

42 Java Jazz Up Nov-07

FlyweightFactory.java

class FlyweightFactory {
private HashMap lstFlyweight;

private static FlyweightFactory factory = new
FlyweightFactory();

private FlyweightFactory() {
lstFlyweight = new HashMap();
}

public synchronized FlyweightIntr
getFlyweight(String divisionName) {
if (lstFlyweight.get(divisionName) == null) {
FlyweightIntr fw = new
Flyweight(divisionName);
lstFlyweight.put(divisionName, fw);
return fw;
} else {
return
(FlyweightIntr)lstFlyweight.get(divisionName);
}
}
 public static FlyweightFactory getInstance() {
 return factory;
}

The client accesses this factory of employees.
Every time, the client wants the information,
which is accessed through this Factory class.
The specifications are passed through the
method parameters and new employee
information is returned.

Flyweight.java

//Inner flyweight class

private class Flyweight implements
FlyweightIntr {

private String name;
private String addr;

private void setValues(String name, String
addr) {

this.name = name;
this.addr = addr;
}

private Flyweight(String division) {
if (division.equals(“North”)) {
setValues(“soniya”, “addr1”);
}
if (division.equals(“South”)) {
setValues(“rahul”, “addr2”);
}
if (division.equals(“East”)) {
setValues(“Aqil”, “addr3”);
 }
}

public String getName() {
return company;
}
public String getAddress() {
return address;
 }
 }// end of Flyweight
}// end of FlyweightFactory

class VCard {

 String name;
 String title;

 FlyweightIntr objFW;

 public VCard(String n, FlyweightIntr fw) {
 name = n;
 objFW = fw;
 }

public void print() {
System.out.println(name);
System.out.println(name objFW.getAddress()
);
 }
}

The other important class is Flyweight. This gets
constructed depending on the parameters
passed to the method getName() and
getAddr() of class FlyweightFactory.

This class has methods getters and setters
for information. In each of the instances of
the employees, we can pass the values as
method parameters.
Hence, we can see that by using the flyweight
pattern, we can reduce the instances of the
class.

Design Pattern

 Nov-07 Java Jazz Up 43

Developing Simple Application with - JSF

Many of the web-based applications consists
of login module which lets the user enter with
its own identity and also let the admin
authenticate the user or differentiate between
the registered and normal user. So every user
should have identification strings like user id
and password. This section explains how to
develop this application in JSF.

This application displays a web page indicating
the user to enter login id and password in the
appropriate fields. If user enters correct
information then a message indicating successful
login is displayed otherwise failing message is
displayed. For this application login id and
password are given below:

Login ID: JavaJazzUp

Password : mypwd

Before proceeding further, just have a look over
directory structure of the application. It would
help you to understand where to put which files
and folders.

Directory Structure

Now we will go through all steps involved
developing this application assuming you are
comfortable installing Tomcat server and
configuring JSF in it.

1 Create JSP pages
2 Create managed bean class
3 Register managed bean in configuration

file
4 Define navigation rule in configuration

file
5 Run the application

Creating JSP pages

1. login.jsp

<%@ page contentType=”text/html”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>

<f:view>
<html>
<head><title>JSF Login Application</title>
</head>

<body>
<h:form>

<table>
<tr>

<td>
<h:outputText value=”Enter Login ID: “ />
</td>
<td>
<h:inputText id=
“id” value=”#{LoginBean.loginid}” />
</td>
</tr>
<tr>
<td>
<h:outputText value=“Enter Password: “ />
</td>
<td>
<h:inputSecret id=
“pwd” value=”#{LoginBean.pwd}” />
</td>
</tr>
<tr>
<td> </td>
<td><h:commandButton value=

44 Java Jazz Up Nov-07

“Login”
action=”#{LoginBean.CheckValidUser}” />
</td>

</tr>
</table>

</h:form>
</body>

</html>
</f:view>

Description:

JSF tag libraries are included at the top of the
file to identify jsf html tags and jsf core tags.
JSF outputText tag is used to display text on
the page, inputText tag is used to display user
editable text field component and inputSecret
tag is used to display user editable text field
component in which text are displayed in secret
form. JSF commandButton tag represents the
command button, which have been bounded
to “CheckValidUser” method defined in
LoginBean managed bean class. According to
the result returned by CheckValidUser method
and after matching this result with the value
defined in navigation rule in configuration file,
the next page is displayed.

2. loginfail.jsp:

Login Failed. Please try again.

This page is displayed when the user fills
incorrect entries in the login page.

3. loginsuccess.jsp

Login Successful.

This page is displayed when the user enters
correct entries in the login page.

Creating managed bean class
LoginBean.java

package javajazzup;

public class LoginBean{
String loginid;
String pwd;

public LoginBean(){}

public String getLoginid(){
return loginid;

}

public void setLoginid(String loginid){
this.loginid = loginid;
}

public String getPwd(){
return pwd;
}

public void setPwd(String pwd){
this.pwd = pwd;
}

public String CheckValidUser(){

JSF

 Nov-07 Java Jazz Up 45

if(loginid.equals(“JavaJazzUp”) &&
pwd.equals(“mypwd”))
{

return “success”;
}
else{

return “fail”;
}

}
}

Description:

In login.jsp file, we have used managed bean’s
properties and methods. For this LoginBean
bean have been created which is nothing but a
simple java file which has properties representing
username and password, their setter and getter
methods and an extra method to check whether
the user is genuine. This method returns
“success” if user fills username as “JavaJazzUp”
and password as “mypwd” and “fail” if user fills
any other.

Working with Configuration file

1. faces-config.xml file:

<?xml version=”1.0"?>
<!DOCTYPE faces-config PUBLIC
 “-//Sun Microsystems, Inc.//DTD JavaServer
Faces Config 1.1//EN” “http://java.sun.com/
dtd/web-facesconfig_1_1.dtd”>
<faces-config>
<managed-bean>
<managed-bean-name>LoginBean
</managed-bean-name>
<managed-bean-class>
javajazzup.LoginBean
</managed-bean-class>
<managed-bean-scope>request
</managed-bean-scope>
</managed-bean>
<navigation-rule>
<from-view-id>/login.jsp</from-view-id>
<navigation-case>
<from-action>
#{
LoginBean.CheckValidUser
}
</from-action>

<from-outcome>success</from-outcome>
<to-view-id>loginsuccess.jsp</to-view-id>
</navigation-case>
<navigation-case>
<from-action>
#{
LoginBean.CheckValidUser
}
</from-action>
<from-outcome>fail</from-outcome>
<to-view-id>loginfail.jsp</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

In this file, managed bean “LoginBean” in
“javajazzup” package has been registered as
LoginBean. This is the name, which will be used
in every page to access this bean as we did in
login.jsp. Navigation rule has also been defined
in this file. If CheckValidUser method returns
“success” then “loginsuccess.jsp” page is
returned and if “fail” then “loginfail.jsp” is
returned to the user.

2. web.xml file code:

<?xml version=”1.0"?>
<!DOCTYPE web-app PUBLIC “-//Sun
Microsystems, Inc.//DTD Web Application
2.3//EN” “http://java.sun.com/dtd/web-
app_2_3.dtd”>

<web-app>
<context-param>
<param-name>
javax.faces.STATE_SAVING_METHOD
</param-name>
<param-value>server</param-value>
</context-param>
<!— Faces Servlet —>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>
javax.faces.webapp.FacesServlet
</servlet-class>
<load-on-startup> 1 </load-on-startup>
</servlet>

<!— Faces Servlet Mapping —>
<servlet-mapping>

JSF

46 Java Jazz Up Nov-07

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>
</servlet-mapping>
</web-app>

<servlet> element maps the
“javax.faces.webapp.FacesServlet” servlet class
to a symbolic name i.e. Faces Servlet is an alias
for “javax.faces.webapp.FacesServlet” servlet .
The FacesServlet servlet works as an engine
for all JSF applications (handling of all JSF related
requests, building component tree of the JSP
page, accessing all JSP pages in the application,
creating an Event object and passing it to any
registered listener). So all requests that need
FacesServlet processing must be directed to
this servlet. So if we want to invoke this servlet
with every request we have to do mapping in
<servlet-mapping> element. This is done to map
a particular URL pattern with the Faces servlet.
According to this file, URL of every request must
end with .jsf.

Running the application

Type “http://localhost:8080/
JSFLoginApplication/login.jsf” URL in the
address bar of your browser and hit enter.

JSF

 Nov-07 Java Jazz Up 47

Ajax: An Introduction

• AJAX stands for Asynchronous JavaScript
And XML.

• AJAX is not a new programming language,
but a new way to use existing standards.

• AJAX is a type of programming made highly
popular in 2005 by Google (with Google
Suggest).

• With AJAX you can create better, faster,
more user-friendly, and interactive web
applications (just like Desktop apps).

• AJAX uses asynchronous data transfer
(HTTP requests) between the browser and the
web server, allowing web pages to request
small bits of information from the server
instead of whole pages, so no page reloads.

• The first use of the term in public was
coined by Jesse James Garrett of Adaptive
Path in February 2005.

• AJAX incorporates:
• Standards-based presentation using

XHTML and CSS
• Dynamic display and interaction using

the Document Object Model (DOM)
• Data interchange and manipulation

using XML and XSLT
• Asynchronous data retrieval using
• MLHttpRequest (JavaScript object)
• JavaScript binding everything

together

• Updates the web page data on the fly.

• Uses XMLHttpRequest object to
communicate asynchronously with the Server.
§All of today’s mainstream browsers like
Internet Explorer 5.0+, Safari 1.2, Mozilla 1.0
/ Firefox, Opera 8+, and Netscape 7 support
the XMLHttpRequest object.

AJAX: Redefining Web Applications
By Atul Shinkar

Web Scenario without AJAX:

• One page per request
• One URL for one page
• The whole page updates

Web Scenario with AJAX:

• Each action has a URL
• Multiple requests per page
• You control what updates

Detecting the web browser:

• In JavaScript, we use the following code to
detect the type of browser, the application is
dealing with:

var request;
if (window.XMLHttpRequest) {
//non-Microsoft browser
request = new XMLHttpRequest();
} else if (window.ActiveXObject) {
//Microsoft browser
request = new
ActiveXObject(“Microsoft.XMLHTTP”);
}
AJAX Request ‘n’ Response

48 Java Jazz Up Nov-07

• On some particular event, the JavaScript code
sends the request behind the scenes to the
server (in Java, the request in sent to the
Servlet); the user doesn’t even realize that the
request is being made, i.e. the request is sent
asynchronously, which means that your
JavaScript code (and the user) doesn’t wait
around on the server to respond.

• The server sends data back as a response to
your JavaScript code which decides what to do
with that data.

• The response data can be simple string (used
in case if you’re updating only single field on
the form) or XML string (used for updating
multiple fields on the form).

• The following things happen during AJAX
interaction:

1 A client event occurs.
2 An XMLHttpRequest object is

created and configured.
3 The XMLHttpRequest object

makes a call.
4 The request is processed by the

Servlet.
5 The Servlet returns an XML

document containing the result.
6 The XMLHttpRequest object calls

the callback() function and
processes the result.

7 The HTML DOM (or UI) is
updated.

Code illustrations for AJAX request ‘n’
response:

SimpleAJAXDemo.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD
HTML 4.01 Transitional//EN”>
<html>
 <head>
 <title>Simple AJAX Demo</title>

 <meta http-equiv=”keywords”
content=”keyword1,keyword2,keyword3">
 <meta http-equiv=”description”
content=”this is my page”>

<meta http-equiv=”content-type”
content=”text/html; charset=UTF-8">

<script language=”javascript”>
var req;
function convertToString() {
var num =
document.getElementById(“num”);
var url = “/ajaxapp/
SimpleAJAXResponse?num=” +
escape(num.value);
if(window.XMLHttpRequest){
req = new XMLHttpRequest();
}
else if(window.ActiveXObject){
req = new
ActiveXObject(“Microsoft.XMLHTTP”);
}
req.open(“Get”,url,true);
req.onreadystatechange = callback;
req.send(null);
}
function callback() {
if(req.readyState==4){
if(req.status==200) {
var strNum =
document.getElementById(“numstring”);
strNum.value = req.responseText;
}
}
}

function clear(){
var num =
document.getElementById(“num”);
num.value = “”;
}

function focusIn(){
document.getElementById(“num”).focus();
}
</script>

</head>

<body onload=”focusIn();”>
Enter the Number here:
<input type=”text” id=”num” name=”num”
onkeyup=”convertToString();”>

Equivalent String:
<input type=”text” size=”20" readonly

AJAX: Redefining Web Applications

 Nov-07 Java Jazz Up 49

id=”numstring”>
</body>
</html>

SimpleAJAXResponseServlet.java

import java.io.IOException;
import java.rmi.ServerException;
import javax.servlet.http.*;

public class SimpleAJAXResponseServlet
extends HttpServlet {

public void doGet(HttpServletRequest
request, HttpServletResponse response)
throws ServerException, IOException {

String number =
request.getParameter(“num”);
String strRepr = null;

if(number != null){
switch(Integer.parseInt(number)){

case 0:
strRepr = “Zero”;

break;
case 1:

strRepr = “One”;
break;
case 2:

strRepr = “Two”;
break;
case 3:

strRepr = “Three”;
break;
case 4:

strRepr = “Four”;
break;
case 5:

strRepr = “Five”;
break;
case 6:

strRepr = “Six”;
break;
case 7:

strRepr = “Seven”;
break;
case 8:

strRepr = “Eight”;
break;
case 9:

 strRepr = “Nine”;
break;

default:
strRepr = “Sorry, no conversion

available for the number “+number+”.”;
}

//Set up the response
response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”,
“no-cache”);
response.getWriter().write(strRepr);
}
else{

response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”,
“no-cache”);
response.getWriter().write(“?”);

}
}

}

Output:

When the number 5 is entered, the output is
like this

When the number 20 is entered, the output
is like this

In the above example, no xml has been used
as we are sending only a single response string,
so there is no need to construct any xml. So,
in this case, we say that the xml is over killed.

AJAX: Redefining Web Applications

50 Java Jazz Up Nov-07

Let’s construct and parse the response
data:

I. Constructing and parsing response
data using XML:

• There is XML parser is built into most
browsers; we just have to leverage the
built-in parser.

• On the Servlet side, we can construct XML
using the following ways:

• StringBuffer [common approach]
• JDOM
• DOM4J
• SAX [Simple API for XML]
• Faster than JDOM & DOM4J

• On the Client side, we’ve to parse the
response XML string using the browser in-
built parser.

• Firefox, Mozilla, Opera, and Safari all use
new DOMParser() to get a built-in parser
that can parse XML

• Internet Explorer, on the other hand,
uses new
ActiveXObject(“Microsoft.XMLDOM”) to
get the Microsoft XML parser.

• Example XML response string:

<converted-values>
<decimal>97</decimal>
<hexadecimal>0x61</hexadecimal>
<octal>0141</octal>
<binary>1100001B</binary>
</converted-values>

Code illustrations for Constructing and
parsing response data using XML:

AJAXCharacterDecoderUsingXML.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD
HTML 4.01 Transitional//EN”>
<html>
 <head>
 <title>AJAXCharacterDecoder.html</title>

<meta http-equiv=”keywords”
content=”keyword1,keyword2,keyword3">
<meta http-equiv=”description” content=”this
is my page”>
<meta http-equiv=”content-type”
content=”text/html; charset=UTF-8">

<!—<link rel=”stylesheet” type=”text/css”
href=”./styles.css”>—>

<script language=”javascript”>

var request;

function convertToXML(){

var key = document.getElementById(“key”);
var keypressed =
document.getElementById(“keypressed”);
keypressed.value = key.value;
var url = “/ajaxapp/
CharacterDecoderUsingXML?key=” +
escape(key.value);
if(window.XMLHttpRequest){
request = new XMLHttpRequest();
} else{
request = new
ActiveXObject(“Microsoft.XMLHTTP”);
}
request.open(“Get”,url,true);
request.onreadystatechange = callback;
request.send(null);
}

function callback(){
if(request.readyState == 4){
if(request.status == 200){
if(window.XMLHttpRequest){
nonMSPopulate();
} else{
msPopulate();
}
}
}
}

function nonMSPopulate(){
var response = request.responseText;
var xmlDoc =
document.implementation.createDocument(“”,””,null);
var parser = new DOMParser();
var dom =

AJAX: Redefining Web Applications

 Nov-07 Java Jazz Up 51

parser.parseFromString(response,”text/xml”);
binVal =
dom.getElementsByTagName(“binary”);
var binary =
document.getElementById(“binary”);
binary.value =
binVal[0].childNodes[0].nodeValue;
octVal =
dom.getElementsByTagName(“octal”);
var octal =
document.getElementById(“octal”);
octal.value =
octVal[0].childNodes[0].nodeValue;
decVal =
dom.getElementsByTagName(“decimal”);
var decimal =
document.getElementById(“decimal”);
decimal.value =
decVal[0].childNodes[0].nodeValue;
hexVal =
dom.getElementsByTagName(“hexadecimal”);
var hexadecimal =
document.getElementById(“hexadecimal”);
hexadecimal.value =
hexVal[0].childNodes[0].nodeValue;
}
function msPopulate(){
var response = request.responseText;
var xmlDoc = new
ActiveXObject(“Microsoft.XMLDOM”);
xmlDoc.async = “false”;
xmlDoc.loadXML(response);
nodes =
xmlDoc.documentElement.childNodes;
bin =
xmlDoc.getElementsByTagName(‘binary’);
var binary =
document.getElementById(‘binary’);
binary.value = bin[0].firstChild.data;
oct =
xmlDoc.getElementsByTagName(‘octal’);
var octal = document.getElementById(‘octal’);
octal.value = oct[0].firstChild.data;
dec =
xmlDoc.getElementsByTagName(‘decimal’);
var decimal =
document.getElementById(‘decimal’);
decimal.value = dec[0].firstChild.data;
hex =
xmlDoc.getElementsByTagName(‘hexadecimal’);
var hexadecimal =
document.getElementById(‘hexadecimal’);

}
function focusIn(){
document.getElementById(“key”).focus;

}
</script>
</head>
<body onload=”focusIn();”>
<h1>AJAX Character Decoder</h1>

<table>

<tr>
<td>

Enter the key here: <input
type=”text” id=”key” name=”key”
maxlength=”2" size=”2"
onkeyup=”convertToXML();”>

</td>
</tr>

 </table>
 <table border=”1">

<tr>
<td align=”center” colspan=”5">

Key pressed:
<input type=”text” readonly

id=”keypressed” maxlength=”2" size=”2">
</td>

</tr>
<tr>

<td align=”center”>Binary</td>
<td align=”center”>Octal</td>
<td align=”center”>Decimal</td>
<td align=”center”>Hexadecimal</td>

</tr>
<tr>

<td align=”center”>
<input type=”text” readonly id=”binary”>

</td>
<td align=”center”>

<input type=”text” readonly id=”octal”>
</td>
<td align=”center”>

<input type=”text” readonly id=”decimal”>
</td>

<td align=”center”>
<input type=”text” readonly
id=”hexadecimal”>

</td>
</tr>

 </table>
 </body>

</html>

AJAX: Redefining Web Applications

52 Java Jazz Up Nov-07

CharacterDecoderUsingXMLServlet.java

import java.io.IOException;
import java.rmi.ServerException;
import javax.servlet.http.*;

public class CharacterDecoderUsingXMLServlet
extends HttpServlet {

public void doGet(HttpServletRequest
request, HttpServletResponse response)
throws ServerException, IOException {

String strEnteredKey =
request.getParameter(“key”);
StringBuffer responseXML = null;
System.out.println(“\nUsing XML”);
System.out.println(“Entered key:
“+strEnteredKey);
if(strEnteredKey!=””){
int num = Integer.parseInt(strEnteredKey);
responseXML = new
StringBuffer(“\r\n<converted-values>”);
responseXML.append
(“\r\n<binary>”+Integer.toBinaryString(num)+
”</binary>”);
responseXML.append
(“\r\n<octal>”+Integer.toString(num,8)+
”</octal>”);

responseXML.append(“\r\n<decimal>”+num+
”</decimal>”);

responseXML.append
(“\r\n<hexadecimal>”+Integer.toString(num,16)+
”</hexadecimal>”);
responseXML.append(“</converted-
values>”);

System.out.println(“\n”+responseXML.toString());
response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”, “no-
cache”);
response.getWriter().write
(responseXML.toString());

}
else{

responseXML = new
StringBuffer(“\r\n<converted-values>”);
responseXML.append(“\r\n<binary>?
</binary>”);
responseXML.append(“\r\n<octal>?

</octal>”);
responseXML.append(“\r\n<decimal>?
</decimal>”);

responseXML.append(“\r\n<hexadecimal>?</
hexadecimal>”);
responseXML.append
(“</converted-values>”);

System.out.println(“\n”+responseXML.toString());
response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”,
“no-cache”);

response.getWriter().write(responseXML.toString());
}

}
}

Output:

When you enter 12, the corresponding out is
like as shown:

Corresponding output generated at the
server console:

AJAX: Redefining Web Applications

 Nov-07 Java Jazz Up 53

Using XML
Entered key: 12
 <converted-values>
 <binary>1100</binary>
 <octal>14</octal>
 <decimal>12</decimal>
 <hexadecimal>c</hexadecimal>
</converted-values>

If you do not provide any value, it behaves
similar as shown below:

When the number 67 is entered, it behaves
as:

Corresponding output at the server
console:

Using XML
Entered key: 67
 <converted-values>
 <binary>1000011</binary>
 <octal>103</octal>
 <decimal>67</decimal>
 <hexadecimal>43</hexadecimal>
</converted-values>

In the above servlet, we used simple
StringBuffer class to create a xml as a response
string. This response string is then parsed at
the client-side by leveraging the built-in xml
parsers in the browser. There are two different

functions given in the html file, i.e. msPopulate(
) for IE browser and nonMSPopulate() for
non-IE browsers. The extracted data is then
placed into the different UI elements of the web
page.

II. Constructing and parsing the response
data with JSON:

• One major drawback with XML is speed.

• XML requires two tags per data point, plus
extra tags for parent nodes. All this extra
data in transmission slows down the data
exchange between the client and server.

• It means that the data transmission
becomes slower as the response XML string
becomes bulkier.

• So, there is another way to send data to
the client that is easier to parse and more
compact. That alternative is JSON
[JavaScript Object Notation].

• Advantages of using JSON:

• JSON objects are typically smaller than the
equivalent XML documents.

• Working with them is more memory-
efficient.

• You can parse JSON with JavaScript’s
eval() function – For this you don’t
need other libraries, and you don’t need
to worry as much about cross-browser
functionality.

• As long as your browser has JavaScript
enabled and supports the eval() function,
you will be able to interpret the data.

• Following is the data object represented
in JSON:
{
“conversion”:
{
“decimal”: “120”,
“hexadecimal”: “78”,
 “octal”: “170”,
“binary”: “1111000B”

AJAX: Redefining Web Applications

54 Java Jazz Up Nov-07

}
}

• On Servlet side, we can construct JSON
object using

• StringBuffer [common approach]
• Using JSON library
• Can be downloaded from: http://

www.JSON.org/java/json_simple.zip

Code illustrations for Constructing and
parsing response data using JSON:

AJAXCharacterDecoderUsingJSON.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD
HTML 4.01 Transitional//EN”>
<html>
 <head>
 <title>AJAX Character Decoder</title>
 <meta http-equiv=”keywords”

content=”keyword1,keyword2,keyword3">
 <meta http-equiv=”description”

content=”this is my page”>
 <meta http-equiv=”content-type”

content=”text/html; charset=UTF-8">

 <!—<link rel=”stylesheet” type=”text/css”
href=”./styles.css”>—>

 <script language=”javascript”>
var request;
function convertToXML(){

var key =
document.getElementById(“key”);
var keypressed =
document.getElementById(“keypressed”);
keypressed.value = key.value;
var url = “/ajaxapp/
CharacterDecoderUsingJSON?key=” +
escape(key.value);
if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
} else{
request = new
ActiveXObject(“Microsoft.XMLHTTP”);
}

request.open(“Get”,url,true);
request.onreadystatechange = callback;
request.send(null);

}

function callback(){
if(request.readyState == 4){
if(request.status == 200){
populateUsingJSON();
}

}
}

function populateUsingJSON(){

var jsonData = request.responseText;

var jsonObject = eval(‘(‘+jsonData+’)’);

var binary =
document.getElementById(“binary”);
binary.value =
jsonObject.conversion.binary;
var octal =
document.getElementById(“octal”);
octal.value = jsonObject.conversion.octal;
var decimal =
document.getElementById(“decimal”);
decimal.value =
jsonObject.conversion.decimal;

var hexadecimal =
document.getElementById(“hexadecimal”);
hexadecimal.value =
jsonObject.conversion.hexadecimal;

}

function focusIn(){
document.getElementById(“key”).focus;
}
</script>

 </head>

 <body onload=”focusIn();”>
 <h1>AJAX Character Decoder</h1>

 <table>
<tr>

 <td>
 Enter the key here:

<input type=”text” id=”key” name=”key”
maxlength=”2" size=”2"
onkeyup=”convertToXML();”>

</td>

AJAX: Redefining Web Applications

 Nov-07 Java Jazz Up 55

</tr>
 </table>
 </br>
 <table border=”1">

<tr>
<td align=”center” colspan=”5">
Key pressed:

<input type=”text” readonly id=”keypressed”
maxlength=”2" size=”2">
</td>
</tr>

<tr>
<td align=”center”>Binary</td>
<td align=”center”>Octal</td>
<td align=”center”>Decimal</td>
<td align=”center”>Hexadecimal</td>

</tr>
<tr>

<td align=”center”>
<input type=”text” readonly id=”binary”>
</td>
 <td align=”center”>
<input type=”text” readonly id=”octal”>
</td>
<td align=”center”>
<input type=”text” readonly id=”decimal”>

</td>
<td align=”center”>

<input type=”text” readonly
id=”hexadecimal”>
</td>

</tr>
 </table>

</body>
</html>

CharacterDecoderUsingJSONServlet.java

import java.io.IOException;
import java.rmi.ServerException;
import javax.servlet.http.*;

public class
CharacterDecoderUsingJSONServlet extends
HttpServlet {

public void doGet(HttpServletRequest
request, HttpServletResponse response
)throws ServerException, IOException {

String strEnteredKey =

request.getParameter(“key”);
StringBuffer resp = null;
if(strEnteredKey!=””){
int num = Integer.parseInt(strEnteredKey);
resp = new StringBuffer
(“\r\n{\”conversion\”:{“);
resp.append(“\r\n\”binary\”:
\””+Integer.toBinaryString(num)+”\”,”);
resp.append(“\r\n\”octal\”:
\””+Integer.toString(num,8)+”\”,”);
resp.append(“\r\n\”decimal\”: \””+num+”\”,”);
resp.append(“\r\n\”hexadecimal\”:
\””+Integer.toString(num,16)+”\”}”);
resp.append(“\r\n}”);
response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”, “no-
cache”);
response.getWriter().write(resp.toString());

}
else{

resp = new
StringBuffer(“\r\n{\”conversion\”:{“);
resp.append(“\r\n\”binary\”: \”?\”,”);
resp.append(“\r\n\”octal\”: \”?\”,”);
resp.append(“\r\n\”decimal\”: \”?\”,”);
resp.append(“\r\n\”hexadecimal\”: \”?\”}”);
resp.append(“\r\n}”);
response.setContentType(“text/xml”);
response.setHeader(“Cache-Control”, “no-
cache”);
response.getWriter().write(resp.toString());
}
}
}

Output:

AJAX: Redefining Web Applications

56 Java Jazz Up Nov-07

When the number 4 is entered, the output
looks like:

If you do not provide any value, it behaves
similar as shown below:

Checking it again with number 27.

In the above servlet, we used simple
StringBuffer class to create a JSON object as a
response string. This response string is then
parsed at the client-side by using the
JavaScript’s eval() function.

The extracted data is then placed into the
different UI elements of the web page.

Advantages

• We can build rich Internet applications
with AJAX.

• The interface is much more responsive.
The user has the feeling that changes
areinstantaneous.

• Waiting time is reduced.

• If a page section encounters an error,

other sections are not affected (if not
logically linked) and the data already
entered by the user is not lost.

• Traffic to and from the server is
reduced considerably.

Disadvantages

• The web page cannot connect with the
browser history engine.

• AJAX is not meant to be used in every
application. One of the main reasons for
this stays in the fact that search engines
cannot index it. So, keeping this in mind,
a much better idea than creating
complete AJAX application, it would be
better to scatter AJAX features within
the application.

• Not all browsers (especially older ones)
have complete support for JavaScript or
the XMLHttpRequest object.

Some examples of popular websites using
AJAX:

• Following are some popular websites using
AJAX:
• Google Suggest
• Google Maps
• GMail
• Google Reader
• Blogger
• Flickr
• YouTube

Ajax isn’t a technology: it’s a group of ideas
that, used together, have proven very
powerful to make the web applications more
interactive, but is not meant to be used in
every web application.

AJAX: Redefining Web Applications

 Nov-07 Java Jazz Up 57

1. Splash Screen in Java 6.0

Splash screens are standard part of many GUI
applications to let the user know about starting
of the application. AWT/Swing can be used to
create splash screens in Java. Prior to Java SE
6, you need to create a window and include an
image in it when main method starts to get the
behavior of splash screen. But to get the output,
Java run time needs to be fully initialized before
the window appeared. A new feature in Java SE
6 allows an application to show a splash screen
even before the Java runtime starts with the
help of a new command-line option that enables
the image to be displayed more quickly to the
user i.e. even before starting of Java runtime.
If you are using command line to run the
application, generate splash screen using –
splash command line switch followed by a colon,
which is followed by the image name. For
example, to display button.png image file as
splash screen when running
SplashScreenExample.java file, you can type the
following in command line.

java -splash:button.png
SplashScreenExample

The splash screen image can be of GIF, PNG, or
JPEG format and support transparency,
translucency, and animation. When the
application creates its first window the splash
screen disappears.

Example Code:

import javax.swing.*;
import java.awt.*;

public class SplashScreenExample {
 public static void main(String args[]) {
 Runnable r = new Runnable() {
 public void run() {
 try {
 Thread.sleep(1500);
 }
 catch (InterruptedException e) {
 System.out.println(e.getMessage());
 }
JFrame frame = new JFrame(“Splash Screen
Example!”);
 frame.setDefaultCloseOperation

(JFrame.EXIT_ON_CLOSE);
JLabel label = new JLabel(“Welcome to
JavaJazzUp”, JLabel.CENTER);
label.setBackground(Color.RED);
frame.add(label, BorderLayout.CENTER);
frame.setSize(200, 100);
frame.setVisible(true);
 }
 };
 EventQueue.invokeLater(r);
 }
}

Compile
javac SplashScreenExample.java

Run:
java -splash:button.png
SplashScreenExample

The image can be seen in the figure

above. It disappears before frame gets
visible. The frame can be seen in the figure
below.

2. Creating Tabs with swing
Many applications need to keep group of
components and switch between them. For this
tab componets are useful in which we can group
components and switch between them clicking
those tabs. For this, JtabbedPane class in

Tips & Tricks

58 Java Jazz Up Nov-07

javax.swing package can be used in Java. To
create a tabbed pane, instantiate JTabbedPane,
create components you wish it to display, and
then add components to the tabbed pane using
addTab() method.

Example Code:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class JTabbedPaneExample implements
ActionListener {

JFrame frame;
 JTabbedPane tabPane;
 JButton addTab;
 ImageIcon close;
 Dimension size;
 int tabCounter = 0;

public static void main(String[] args) {
JTabbedPaneExample jtab = new

JTabbedPaneExample();
}

public JTabbedPaneExample() {
// Create a frame

 frame = new JFrame();
// Create the tabbed pane.

 tabPane = new JTabbedPane();
 // Create a button to add a tab
 addTab = new JButton(“Add Tab”);
 addTab.addActionListener(this);
 // Create an image icon to use as a
close button
 close = new ImageIcon(“C:/
JAVAJAZZUP/tabClose.gif”);
 size = new
Dimension(close.getIconWidth()+1,
close.getIconHeight()+1);

//Adding into frame
 frame.add(tabPane,
BorderLayout.CENTER);
 frame.add(addTab,
BorderLayout.NORTH);

frame.setSize(300, 300);
 frame.setDefaultCloseOperation
(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent e)
{

JLabel label = null;
final JPanel panel = new JPanel();

 // Create a panel to represent the tab
 JPanel tab = new JPanel();
 tab.setOpaque(false);

try{
String str =

JOptionPane.showInputDialog(null, “Enter Tab
Name : “, “JavaJazzUp”, 1);

if (str.length() == 0){
JOptionPane.showMessageDialog(null,

“Please Enter the Tab Name : “, “JavaJazzUp”,
1);

}
else if (str != null){

label = new JLabel(str);
}
else{

JOptionPane.showMessageDialog(null,
“You pressed cancel button.”, “JavaJazzUp”,
1);

}
JButton tabClose = new JButton(close);
tabClose.setPreferredSize(size);
tabClose.addActionListener(new

ActionListener() {
public void

actionPerformed(ActionEvent e) {
int tNum =

tabPane.indexOfComponent(panel);
tabPane.removeTabAt(tNum);

}
});
tab.add(label, BorderLayout.WEST);
tab.add(tabClose, BorderLayout.EAST);
tabPane.addTab(null, panel);
tabPane.setTabComponentAt(
tabPane.getTabCount()-1, tab);

}
catch(Exception ex){}

}

Tips & Tricks

 Nov-07 Java Jazz Up 59

}
Compile and run this program:

Output:
After running this program, you get:

If you click “Add Tab” button then the input
box appears on the screen:

Suppose, you fill “Java” in the input box and
click the “OK” button:

After clicking the “OK” button, you get a tab
named “Java”.

If

you don’t give any name to the input box
then it gives:

In the same way, you can add many tabs. For
example, here is one more tab named
“JavaJazzUp” in the figure below:

3. Sending jar file as a Servlet Response

Sometimes, the user needs to download any
jar file. This is the example where the “SendJar”
servlet is responsible to send the jar file to the
user when requested. This code is given below.
The important part of this program is to set
the content type, which intimates the browser
about the type of content to be sent by the
servlet. An HTTP response header named

Tips & Tricks

60 Java Jazz Up Nov-07

content-disposition allows the servlet to specify
information about the file’s presentation. This
is used to indicate that the content should be
opened separately not in the browser; it should
not be displayed automatically, suggesting the
file name. In this example, the file will be
downloaded with the name “MyJar.jar”.
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SendJar extends HttpServlet{
public void doGet(HttpServletRequest req,
HttpServletResponse res) throws
ServletException, IOException{
res.setContentType(“application/jar”);
res.addHeader(“Content-Disposition”,
“attachment; filename=MyJar.jar”);
ServletContext sc = getServletContext();
InputStream is = sc.getResourceAsStream(“/
MyJar.jar”);
int len = 0;
byte[] buffer = new byte[1024];
OutputStream os = res.getOutputStream();
while((len = is.read(buffer)) != -1){
os.write(buffer,0,len);
}
os.flush();
os.close();

}
}

4. Chat Server

Chat server is a standalone application that is

the combination of two-application, server
application (which runs on server side) and
client application (which runs on client side).
This application is used for chatting in LAN.
You must be connected with the server
before chatting and then your message will be
broadcast to every client.
This application uses some core java features
like swing, collections, networking, I/O streams
and threading also. In this application we have
one server and number of clients (which are to
be communicated with each other). To make a
server we have to run the MyServer.java file at
any system on the network that we want to
make server and for client we have to run
MyClient.java file on the system that we want
to make client. To run the whole client operation
we can run the Login file (Login.java). It can
directly call client file (MyClient.java).

Client Side application
Before programming the functionality of client
side application we need to take the identification
of the user, for example user name so that it
can be used further in the next client application.
So in this application, “Login.java” creates the
login frame that consists of one textfield and
the login button. After hitting the login button
it shows the next frame that is Client Frame
that consists of one textfield to write the
message, one send button to send it and two
list boxes, one is to show all the messages and
the other to show all the user names. This
frame has one more button that is Logout
button for terminating the chat.

Login.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

// Login class which takes a user name and
passes it to client class
public class Login implements ActionListener{
 JFrame frame1;
 JTextField tf;
 JButton button;
 JLabel heading;
 JLabel label;

Tips & Tricks

 Nov-07 Java Jazz Up 61

 public static void main(String[] args){
 new Login();
 }
 public Login(){
 frame1 = new JFrame(“Login Page”);
 tf=new JTextField();
 button=new JButton(“Login”);
 heading=new JLabel(“Chat Server”);
 heading.setFont(new Font(“Impact”,
Font.BOLD,40));
 label=new JLabel(“Enter you Login Name”);
 label.setFont(new Font(“Serif”, Font.PLAIN,
24));
 JPanel panel = new JPanel();
 button.addActionListener(this);
 panel.add(heading);panel.add(tf);panel.add(label);
 panel.add(button);
 heading.setBounds(30,20,280,80);
 label.setBounds(20,100,250,60);
 tf.setBounds(50,150,150,30);
 button.setBounds(70,200,90,30);
 frame1.add(panel);
 panel.setLayout(null);
 frame1.setSize(300, 300);
 frame1.setVisible(true);
 frame1.setDefaultCloseOperation

 (JFrame.EXIT_ON_CLOSE);
 }
 // pass the user name to MyClient class
 public void actionPerformed(ActionEvent e){
 String name=””;
 try{
 name=tf.getText();
 frame1.dispose();
 MyClient mc=new MyClient(name);
 }catch (IOException te){}
 }
}

MyClient.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.util.ArrayList;
import java.util.Iterator;

public class MyClient extends WindowAdapter
implements ActionListener{
 JFrame frame;
 JList list;
 JList list1;
 JTextField tf;
 DefaultListModel model;
 DefaultListModel model1;
 JButton button;
 JButton lout;
 JScrollPane scrollpane;
 JScrollPane scrollpane1;
 JLabel label;
 Socket s,s1,s2;
 DataInputStream din;
 DataOutputStream dout;
 DataOutputStream dlout;
 DataOutputStream dout1;
 DataInputStream din1;
 String name;

Tips & Tricks

62 Java Jazz Up Nov-07

 MyClient(String name)throws IOException{
 frame = new JFrame(“Client Side”);
 tf=new JTextField();
 model=new DefaultListModel();
 model1=new DefaultListModel();
 label=new JLabel(“Message”);
 list=new JList(model);
 list1=new JList(model1);
 button=new JButton(“Send”);
 lout=new JButton(“Logout”);
 scrollpane=new JScrollPane(list);
 scrollpane1=new JScrollPane(list1);
 JPanel panel = new JPanel();
 button.addActionListener(this);
 lout.addActionListener(this);
 panel.add(tf);panel.add(button);

panel.add(scrollpane);
 panel.add(label);panel.add(lout);
 panel.add(scrollpane1);
 scrollpane.setBounds(10,20,180,150);
 scrollpane1.setBounds(250,20,100,150);
 label.setBounds(20,180,80,30);
 tf.setBounds(100,180,140,30);
 button.setBounds(260,180,90,30);
 lout.setBounds(260,230,90,30);
 frame.add(panel);
 panel.setLayout(null);
 frame.setSize(400, 400);
 frame.setVisible(true);
 frame.setDefaultClose

Operation(JFrame.EXIT_ON_CLOSE);
 this.name=name;
 frame.addWindowListener(this);
 s=new Socket(“localhost”,1004);

 //creates a socket object
 s1=new Socket(“localhost”,1004);
 s2=new Socket(“localhost”,1004);
 //create inputstream for a particular
socket
 din=new
DataInputStream(s.getInputStream());
 //create outputstream
 dout=new
DataOutputStream(s.getOutputStream());
 //sending a message for login
 dout.writeUTF(name+” has Logged in”);
 dlout=new
DataOutputStream(s1.getOutputStream());
 dout1=new
DataOutputStream(s2.getOutputStream());
 din1=new

DataInputStream(s2.getInputStream());

// creating a thread for maintaning the list of
user name
 My1 m1=new
My1(dout1,model1,name,din1);
 Thread t1=new Thread(m1);
 t1.start();
 //creating a thread for receiving message
 My m=new My(din,model);
 Thread t=new Thread(m);
 t.start();
 }
 public void actionPerformed(ActionEvent e){
 // sending message
 if(e.getSource()==button){
 String str=””;
 str=tf.getText();
 tf.setText(“”);
 str=name+”: > “+str;
 try{
 dout.writeUTF(str);
 System.out.println(str);
 dout.flush();
 }catch(IOException
ae){System.out.println(ae);}
 }
 // client logout
 if (e.getSource()==lout){
 frame.dispose();
 try{
 //sending the message for logout
 dout.writeUTF(name+” has Logged out”);
 dlout.writeUTF(name);
 dlout.flush();
 Thread.currentThread().sleep(1000);
 System.exit(1);
 }catch(Exception oe){}
 }
 }
 public void windowClosing(WindowEvent w){
 try{
 dlout.writeUTF(name);
 dlout.flush();
 Thread.currentThread().sleep(1000);
 System.exit(1);
 }catch(Exception oe){}
 }
}

// class is used to maintaning the list of user
name

Tips & Tricks

 Nov-07 Java Jazz Up 63

class My1 implements Runnable{
 DataOutputStream dout1;
 DefaultListModel model1;
 DataInputStream din1;
 String name,lname;
 ArrayList alname=new ArrayList();
 ObjectInputStream obj;
 int i=0;
 My1(DataOutputStream
dout1,DefaultListModel model1,
 String name,DataInputStream din1){
 this.dout1=dout1;
 this.model1=model1;
 this.name=name;
 this.din1=din1;
 }
 public void run(){
 try{
 // write the user name in output
stream
 dout1.writeUTF(name);
 while(true){
 obj=new ObjectInputStream(din1);
 //read the list of user names
 alname=(ArrayList)obj.readObject();
 if(i>0)
 model1.clear();
 Iterator i1=alname.iterator();
 System.out.println(alname);
 while(i1.hasNext()){
 lname=(String)i1.next();
 i++;
 //add the user names in list box
 model1.addElement(lname);
 }
 }
 }catch(Exception oe){}
 }

}
//class is used to receive message
class My implements Runnable{
 DataInputStream din;
 DefaultListModel model;
 My(DataInputStream din, DefaultListModel
model){
 this.din=din;
 this.model=model;
 }
 public void run(){
 String str1=””;
 while(true){
 try{
 str1=din.readUTF(); // receive the
message
 // add the message in list box
 model.addElement(str1);
 }catch(Exception e){}
 }
 }
}

Server side application
Server side application is used to get the
message from any client and broadcast to each
and every client. And this application is also
used to maintain the list of users and broadcast
this list to everyone.

Tips & Tricks

64 Java Jazz Up Nov-07

The Server side application follows these
steps

1. Create a server socket by which a server
can accept connections from clients across
a network.

ServerSocket ss = new ServerSocket(1004);

2. Use accept() method of ServerSocket to
connect to a client. It returns Socket
object. Add this client socket into arraylist.

Socket s = ss.accept();
ArrayList al2 = new ArrayList();
Al2.add(s);

3. After getting the client socket it creates a
thread and make DataInputStream for this
socket. Then it reads user name and add
it to arraylist and this arraylist object is

written in ObjectOutputStream of each client
by using iterator.

DataInputStream din1=new
DataInputStream(s.getInputStream)
ArrayList alname=new ArrayList();
alname.add(din1.readUTF());
Iterator i1=al2.iterator();
Socket st1;
while(i1.hasNext()){
st1=(Socket)i1.next();
dout1=new
DataOutputStream(st1.getOutputStream());
ObjectOutputStream obj=new
ObjectOutputStream(dout1);
obj.writeObject(alname);
}

4. After this it makes a new thread and
makes one DataInputStream for reading the
messages which is sent by the client and after
reading the message it creates the
DataOutputStream for each socket and writes
this message in each client output stream
through iterator.

String str=din.readUTF();
Iterator i=al.iterator();
Socket st;

while(i.hasNext()){
st=(Socket)i.next();
dout=new
DataOutputStream(st.getOutputStream());
dout.writeUTF(str);
dout.flush();
}

5. If any client logs out then server receives
the client name. Server removes it from the
arraylist and sends this updated arraylist to all
clients.

sname=ddin.readUTF();
alname.remove(sname);

MyServer.java

import java.io.*;
import java.net.*;
import java.util.*;
public class MyServer{
 ServerSocket ss;
 Socket s;
 ArrayList al=new ArrayList();
 ArrayList al1=new ArrayList();
 ArrayList al2=new ArrayList();
 ArrayList alname=new ArrayList();
 Socket s1,s2;
 MyServer()throws IOException{
 ss=new ServerSocket(1004); // create
server socket
 while(true){
 s=ss.accept(); //accept the client socket
 s1=ss.accept();
 s2=ss.accept();
 al.add(s); // add the client socket in
arraylist
 al1.add(s1);
 al2.add(s2);
 System.out.println(“Client is Connected”);
//new thread to maintain the list of user name
 MyThread2 m=new
MyThread2(s2,al2,alname);
 Thread t2=new Thread(m);
 t2.start();
//new thread to receive and send message
 MyThread r=new MyThread(s,al);
 Thread t=new Thread(r);
 t.start();

Tips & Tricks

 Nov-07 Java Jazz Up 65

// new thread to update the list of user name
 MyThread1 my=new
MyThread1(s1,al1,s,s2);
 Thread t1=new Thread(my);
 t1.start();
 }
 }
 public static void main(String[] args){
 try{
 new MyServer();
 }catch (IOException e){}
 }
}
//class is used to update the list of user name
class MyThread1 implements Runnable{
 Socket s1,s,s2;
 static ArrayList al1;
 DataInputStream ddin;
 String sname;
 MyThread1(Socket s1,ArrayList al1,Socket
s,Socket s2){
 this.s1=s1;
 this.al1=al1;
 this.s=s;
 this.s2=s2;
 }
 public void run(){
 try{
 ddin=new
DataInputStream(s1.getInputStream());
 while(true){
 sname=ddin.readUTF();
 System.out.println(“Exit :”+sname);
//remove the logged out user name from
arraylist
 MyThread2.alname.remove(sname);
 MyThread2.every();
 al1.remove(s1);
 MyThread.al.remove(s);
 MyThread2.al2.remove(s2);
 if(al1.isEmpty())
 System.exit(0); //all clients are logged out.
 }
 }catch(Exception ie){}
 }
}

// class is used to maintain the list of all online
users
class MyThread2 implements Runnable{
 Socket s2;
 static ArrayList al2;

 static ArrayList alname;
 static DataInputStream din1;
 static DataOutputStream dout1;

 MyThread2(Socket s2,ArrayList al2,ArrayList
alname){
 this.s2=s2;
 this.al2=al2;
 this.alname=alname;
 }
 public void run(){
 try{
 din1= new
DataInputStream(s2.getInputStream());
// store the user name in arraylist
 alname.add(din1.readUTF());
 every();
 }catch(Exception oe){}
 }
 // send the list of user name to all clients
 static void every()throws Exception{
 Iterator i1=al2.iterator();
 Socket st1;
 while(i1.hasNext()){
 st1=(Socket)i1.next();
 dout1=new
DataOutputStream(st1.getOutputStream());
 ObjectOutputStream obj=new
ObjectOutputStream(dout1);
//write the list of users in stream of all clients
 obj.writeObject(alname);
 dout1.flush();
 obj.flush();
 } }}
//class is used to receive the message and
//send it to all clients
class MyThread implements Runnable{
 Socket s;
 static ArrayList al;
 DataInputStream din;
 DataOutputStream dout;

Tips & Tricks

66 Java Jazz Up Nov-07

 MyThread(Socket s, ArrayList al){
 this.s=s;
 this.al=al;
 }
 public void run(){
 String str;
 int i=1;
 try{
 din=new
DataInputStream(s.getInputStream());
 }catch(Exception e){}

 while(i==1){
 try{
 str=din.readUTF(); //read the message
 distribute(str);
 }catch (IOException e){}
 }
 }
 // send it to all clients
 public void distribute(String str)throws
IOException{
 Iterator i=al.iterator();
 Socket st;
 while(i.hasNext()){
 st=(Socket)i.next();
 dout=new
DataOutputStream(st.getOutputStream());
 dout.writeUTF(str);
 dout.flush();
 }
 }
}

Tips & Tricks

 Nov-07 Java Jazz Up 67

Advertise with JavaJazzUp
We are the top most providers of technology

stuffs to the java community. Our technology
portal network is providing standard tutorials,
articles, news and reviews on the Java
technologies to the industrial technocrats. Our
network is getting around 3 million hits per
month and its increasing with a great pace.

For a long time we have endeavored to provide
quality information to our readers. Furthermore,
we have succeeded in the dissemination of the
information on technical and scientific facets of
IT community providing an added value and
returns to the readers.

We have serious folks that depend on our site
for real solutions to development problems.

JavaJazzUp Network comprises of :

http://www.roseindia.net
http://www.newstrackindia.com
http://www.javajazzup.com
http://www.allcooljobs.com

Advertisement Options:

Banner Size Page Views Monthly
Top Banner 470*80 5,00,000 USD 2,000
Box Banner 125 * 125 5,00,000 USD 800
Banner 460x60 5,00,000 USD 1,200
Pay Links Un Limited USD 1,000
Pop Up Banners Un Limited USD 4,000

The http://www.roseindia.net network is the
“real deal” for technical Java professionals.
Contact me today to discuss your customized
sponsorship program. You may also ask
about advertising on other Technology
Network.

Deepak Kumar
deepak@roseindia.net

68 Java Jazz Up Nov-07

 Nov-07 Java Jazz Up 69

