
 Oct-07 Java Jazz Up 1

2 Java Jazz Up Oct-07

 Oct-07 Java Jazz Up 3

October 2007 Volume I Issue IV

“ Just don’t do because others are doing, Give
it a thought….
Still circumstances want you to do the same
Just explore a smarter way to get the deeds
in perfection ”

Published by

RoseIndia

JavaJazzUp Team

Editor-in-Chief

Deepak Kumar

 Editor-Technical

Ravi Kant
Noor-En-Ahmed

Sr. Graphics Designer

Suman Saurabh

Jr. Graphics Designer

Amardeep Patel
Santosh Kumar

Editorial

Register with JavaJazzUp

and grab your monthly issue

“Free”

Dear Readers,

We are here again with the fourth issue of Java Jazz-up.
The current edition highlights the interesting Java
technologies in form of articles developed by the Java
Jazz-up Developer’s Team. This issue reflects our
consistent attempts to avail the quality technological
updates that enforce the readers to appreciate a lot and
be a part of its Readers Community.

With this issue, we have begun few of the new sections
like Editorial Choice, Java ME and Know The Champions.
The Editorial Choice section highlights the editor’s
viewpoint orienting around the java innovations in diverse
spheres of human interest. This section talks high of
JavaFX Technology and tries to avail its features which
aims to provide a consistent user experience across a
wide variety of devices including desktops (as applets
and stand-alone clients), set-top boxes, mobile devices
and Blu-Ray players.

Java ME section highlights the role of java in the
development of softwares for small, resource-constrained
devices such as cell phones, PDAs and set-top boxes.

Next, newer section is “Know The Champions” which
highlights the “Java Champions program” sponsored by
Sun Microsystems. This program is an effort to recognize
leaders in the Java Community and invite them to
participate in the development of the Java platform in
collaboration with Sun engineers and Java Luminaries.

Set of articles discussing technologies like Maven2, Design
patterns, JSF Tags, web services, spring framework etc.
are provided in such a manner that even a novice learns
and implements the concepts in a easy manner.

Java News and Updates section provides the latest things
going around the globe that makes the readers aware of
the java-technological advancements. In this section you
will know about the new features introduced in the existing
tools, utilities, application servers, IDEs, along with the
Java API updates.

To make it interesting for readers we have categorized
each section with different colors with images that lure
readers while reading technological stuffs. We are
providing it in a PDF format that you can view and even
download it as a whole and get its hard copy.

Please send us your feedback about this issue and
participate in the Reader’s Forum with your problems,
issues concerned with the topics you want us to include
in our next issues.

Editor-in-Chief
Deepak Kumar
Java Jazz up

4 Java Jazz Up Oct-07

05 Java News | Java Around the Globe- Sun adds features to the Java platform’s
existing security by announcing two new Java SE security features.

07 New Releases |Hibernate Search 3.0 available: Now the developers can take
advantage of advanced search capabilities like Google without extra infrastructure
coding with the help of Hibernate Search 3.0.

09 JavaFX | The Java revolution, which started more than a decade ago, gains even more
momentum with the arrival of JavaFX.

14 Java Platform Micro Edition | It is a natural phenomenon to think about learning
and adopting new technologies while there exists some well-established and
popular ones.

22 Know the Java Champions: James Gosling|The Java Champions program was launched in
June 2005 at the JavaOne Conference in San Francisco.

26 JBoss Seam: Web 2.0 Applications | JBoss Seam is a powerful new application framework
developed by JBoss, a division of Red Hat for building next generation Web 2.0 applications.

31 Maven 2 Eclipse Plug-in | Plugins are great in simplifying the life of programmers; it
actually reduces the repetitive tasks involved in the programming.

35 Tomahawk Tags |Tomahawk tags are collection of standard components with extended
functionality and many more extra set of components with rich set of functionality.

41 Remoting with Spring | Spring features remoting support using various technologies.
Remoting support eases the development of remote-enabled services, implemented with
usual (Spring) POJOs.

46 Java Architecture for XML Binding | Today, XML has emerged as the standard for
exchanging data across disparate systems, and Java technology provides a platform for
building portable applications

50 Structural Design Patterns | Structural Design Pattern establishes a
relationship between the two unrelated interfaces such that they work together.

55 Develop - JSF Application| This section is very useful for any beginner in the field of
JSF (Java Server Faces) framework of Java. This example covers all you need to develop the
application, for example, using JSF tags, creating properties files and managed beans, modifying
configuration files like faces-config.xml and web.xml, directory structure of the application
etc.

62 Rich Internet Application| The term RIA (Rich Internet Applications) refers to web
applications that have the features and functionality of traditional desktop applications, it
means Rich Internet Applications are a cross between web applications and traditional
desktop applications that shift some of the essential processing among the bulk of the data
for the user interface to the Web client while rest of some remain on application server.

68 Tips & Tricks| You must have worked with Notepad to write programs. Now its turn to
create notepad by own with the help of java language.

76 Advertise with Us | We are the top most providers of technology stuffs to the java community.

Content

 Oct-07 Java Jazz Up 5

Sun Advances Security for
the Java SE Platform

Sun adds features to the Java platform’s
existing security by announcing two new Java
SE security features. These features strengthen
Java as the most widely used and secure
software platform. These two new features are
“synchronized release of Java SE security fixes”
and “advance customer notification of those
releases”. Sun will begin delivering synchronized
security releases of current and legacy versions
of Java. Although user is recommended to use
latest release of Java to get the latest features
but now for those who works on older versions
of Java platform have the opportunity to install
synchronized updates of security fixes that are
same as in the latest release. Sun also planned
to provide advance notification of its Java SE
security updates on the Sun Security Blog up
to a week before its release. It will contain
summarized information of the release and the
expected time to release.

Microsoft and Sun Expand
Strategic Alliance

Now Sun Microsystems and Microsoft, two
big names in the field of computer world, have
decided to work together on a support process
for customers who are using the virtualization
solutions. Both together will ensure that Solaris
will run well as a guest operating system in
Microsoft virtualization technologies and the
same for Windows Server on Sun virtualization
technologies. “Sun is now a single source for
today’s leading operating systems - Solaris and
Windows - on the industry’s most innovative
x64 systems and storage products. Customers
can now take advantage of the virtualization
benefits of Windows and Solaris on Sun’s
energy efficient x64 systems,” said John Fowler,
executive vice president, Systems Group, Sun
Microsystems. “Today’s announcement is
another example of Microsoft’s commitment to
64-bit computing,” said Bob Muglia, senior vice
president, Server and Tools Division at
Microsoft. “The Sun hardware platform is an
excellent foundation for Windows-based
enterprise solutions, such as Microsoft Virtual
Server, Microsoft SQL Server, Microsoft

Exchange Server and Microsoft Internet Protocol
Television (IPTV) Edition. Our customers will have
an additional choice of Windows Server OEM
partners with Sun”. Both jointly announced this
news during a press conference on September
12, 2007.

Linux, Java entertain in flight

Now in-flight entertainment system used in
corporate jets will use Java software on the
Aonix PERC Ultra virtual machine on top of
MontaVista Software’s Mobilinux operating
system and the Freescale i.MX31 multimedia
applications processor. Aonix is the provider of
the PERC product line for embedded and real-
time Java developers. Aonix announced in the
“Embedded Systems Conference”, Boston on
18 September that PERC has been selected to
be used in-flight systems.

PERC Ultra is a virtual machine and toolset for
embedded and real-time systems supporting
J2SE. It supports J2SE efficiently and maintains
integrity, performance or real-time behavior.
Support for Java 5 SE was an important factor
to choose PERC Ultra as best Java solution
candidate because it offers required capabilities
for OpenGL and OSGi. PERC offers AOT and
JIT compilation, remote debug support,
deterministic garbage collection, standard
graphics and extended commercial RTOS
support.

Freescale and Sun
Microsystem exploring new
embedded market

Freescale Semiconductor Inc., a global leader in
the design and manufacture of embedded
semiconductors for the automotive, consumer,
industrial, networking and wireless markets is
planning to drive Java® Technology deeper
into embedded markets with Sun
Microsystem. Their joint effort will provide
implementation of Java SE for embedded that
is optimized to leverage the outstanding
hardware acceleration, gigahertz performance,
and ultra-low power capabilities of the
PowerQUICC III processor family. This
implementation is designed for high-

JAVA AROUND THE GLOBE

6 Java Jazz Up Oct-07

performance embedded applications where
PowerQUICC processors are needed like robotic
systems, military avionics systems, multi-
function printers (MFPs) and medical imaging
equipment.

Microsoft Patch for Java VM Applet
Vulnerability

Now the Internet Explorer is free from
security hole that affects the JVM in version 4x
and 5x in the Windows 95, 98, NT and 2000
environment. This patch will not allow the hacker
to gather personal login information through
Java applet on a bobby-trapped site.

FBI looks to Java to streamline
wiretap requests

Now it’s the turn of US investigating giant
FBI on a massive shift of the existing system
National Security Letter (NSL) built with
Microsoft Access database management
software. Now the same functionality is being
implemented with Java Enterprise Edition
application server using Oracle software targeted
to track National Security Letter (NSL) wiretap
cases.

JAVA AROUND THE GLOBE

 Oct-07 Java Jazz Up 7

New Releases
Hibernate Search 3.0 available:
provides full-text search

Now the developers can take advantage of
advanced search capabilities like Google without
extra infrastructure coding with the help of
Hibernate Search 3.0. This hibernate search is
using Apache Lucene internally and provides
full text search capabilities to Hibernate-based
applications. Hibernate Search can be integrated
in applications with advanced features like query
filter and index sharing. It solves the problems
of structural mismatch, duplication mismatch,
the API mismatch. It works well in clustered
and non-clustered mode, synchronous and
asynchronous index updates.

Workflow and scheduler Flux
adds embedding capability for
web Apps

Flux Corporation has announced the release
of Flux 7.5. Flux is an embeddable Java job
scheduler, file transfer, workflow and BPM
(Business Process Management) engine that
can be embedded in web applications using a
JavaScript widget.

“By using Flux’s embeddable designer, Java
developers can meld rich, interactive job,
workflow, and BPM design capabilities
seamlessly into their Web applications,” said
David Sims, President of Flux.

RSF 0.7.2 released

RSF (Reasonable Server Faces) version 0.7.2
has been released. RSF is an open source Java
web framework that is built on spring
framework. There are number of existing Java
frameworks managing the stateful components
in complex way but RSF promotes zero server
state designs and promotes minimal and clean
designs in compare to other Java frameworks.
RSF 0.7.2 features complete integration with
Spring Web Flow, porting SWF flow to a pure-
HTML and pure-Spring environment, combining
SWF’s robust state management with RSF’s
strong markup focus.

HDIV 2.0, Web Application
Security Framework, support
Spring MVC

HDIV 2.0 is currently released version of an
open source Java web application security
framework. Previously HDIV supported Struts
1.x and Struts 2.x, however this release offers
its availability for frameworks like Spring MVC
2.0 and JSTL 1.1 also by extending the Spring
and JSTL tags. HDIV prevents web application
vulnerabilities like SQL injection, cross-site
scripting, and parameter tampering.

Netbeans 6.0 beta and Glassfish
V2 released

Sun has announced the release of GlassFish
V2, the next version of open source Java EE 5
application server and the availability of
NetBeans 6.0 beta IDE. GlassFish V2 provides
features required for scalable and mission critical
deployments. This release adds enterprise
features like clustering, centralized
administration, project metro, open ESB,
NetBeans IDE integration. NetBeans 6.0 Beta
provides improved productivity by an integrated
and configurable IDE. It supports for dynamic
language like Ruby, JavaScript. It adds multiple
language support, much faster editor, local
history of file changes, and integrated support
for Subversion, and a built-in profiler. “Together,
GlassFish and NetBeans offer a feature-rich,
low-cost platform for developing and delivering
applications that meet the demanding needs
of the enterprise,” said Karen Tegan Padir, vice
president, Software Infrastructure, Sun.

Jerry Messenger Server 1.01
released - XMPP server

Jerry Messenger Server is now available with
its new version 1.01. It’s a combination of
XMPP/ Jabber server and a web server, which
allows live chatting for the web site on the
server as a standalone application. You can be
online with site visitors every time through
mobile phone also. This messenger supports
multiple accounts where each may have several
operators. Accounts can be created for different

8 Java Jazz Up Oct-07

departments of your organization and for each
of your web sites. It’s fully customizable
messenger. Some of its features can be listed
as: XMPP based messaging protocol, Any Jabber
compatible operator software, multiple account
support, private and secured live chat
messaging, customizable operator loading,
message log, online presence management,
multilingual, fully customizable, extensible and
cross platform.

Open Source Business Library
(OSBL) 1.0 released

Open Source Business Library (OSBL) 1.0
has been released. It covers everything required
to build sophisticated master data management
applications and process based applications with
services, relational persistence, a web UI,
authentication and authorization, identity
management and more. The goal of OSBL is to
provide a solution that efficiently supports work
processes in a business environment. Several
open source high quality components are
available in the market but they individually fail
to achieve a solution mainly when integrating
into a whole. OSBL reaches to the aim of
achieving this integration.

Profiler YourKit 7.0 released

YourKit 7.0, a profiler for Java and .NET, has
been released with set of new features. Some
of them are: automatic memory inspections,
object generations that is very helpful in finding
memory leaks, ability to compare snapshots
from different runs, monitor profiling, Better
detection of local profiled applications, internal
improvements and optimizations, improved
reliability and performance.

New Releases

 Oct-07 Java Jazz Up 9

JavaFX
JavaFX: New Paradigm in
Rich Internet Applications

“Most scripting languages are oriented at
banging out Web pages. This is oriented around
interfaces that are highly animated.”
—James Gosling, [1]

“There are parts of the world where a person’s
desktop computer is their cell phone, and that’s
the kind of end point that we’re going to get
to.” —James Gosling, [2]

It is a natural phenomenon to think about
learning and adopting new technologies while
there exists some well-established and popular
ones, it is the scenario prevailing with the rich
internet application (RIA) development
landscape. There has been a constant demand
for RIAs to provide interactive content
applications and services that would run on a
variety of clients with new features and
capabilities. RIAs are basically the web
applications that have the features and
functionality of traditional desktop applications.
They typically transfer the processing necessary
for the user interface to the web client but keep
the bulk of the data (i.e., maintaining the state
of the program, the data etc) back on the
application server.

To simplify and speed up the creation and
deployment of high-impact content for a wide
range of devices, Sun Microsystems announced
JavaFX, a family of products based on Java

technology to create Rich Internet applications
(RIAs).

JavaFX: Sun’s New Product
Family and Technologies

The Java revolution, which started more than a
decade ago, gains even more momentum with
the arrival of JavaFX. It is a new innovation
targeting the billions of consumer devices and
computers powered by Java technology.

JavaFX comprises a comprehensive set of
runtime environments, widgets, development
tools, and scripting environments. It aims to
provide a consistent user experience across a
wide variety of devices including desktops, (as
applets and stand-alone clients) set-top boxes,
mobile devices and Blu-Ray players.

Sun Microsystems first announced JavaFX at
the JavaOne developer’s conference in May
2007. The JavaFX products are intended to
create Rich Internet applications (RIAs).
Currently JavaFX consists of JavaFX Script and
JavaFX Mobile (an OS for mobile devices),
although further JavaFX products are planned.
Sun plans to release JavaFX Script as an open
source project, but JavaFX Mobile will be a
commercial product available through an OEM
license to carriers and handset manufacturers.

Now, JavaFX is going to compete with Adobe
AIR and Microsoft’s Silverlight technologies to
occupy space in the current RIA market.

Emergence of JavaFX

JavaFX began as a project by Chris Oliver called
F3 which stands for “Form follows function”,
and its purpose was to explore making GUI
programming easier in general.
 F3 attempted to demonstrate that we’re not
exploiting the full capabilities of the Java platform
for GUI development. Taking together the
supporting tools like F3, Java platform is highly
competitive with or superior to competing GUI
development platforms such as Macromedia
Flash/Flex/Open Laszlo, Adobe Apollo, Microsoft
WPF/XAML, Mozilla XUL, AJAX/DHMTL.

10 Java Jazz Up Oct-07

At the 2007 JavaOne Conference, Sun
introduced two products in the JavaFX family:
JavaFX Script and JavaFX Mobile.

JavaFX: A big picture

From smart cards to mobile phones to
enterprise applications and supercomputers,
Java technology has become one of the world’s
most significant and pervasive platforms. Java
technology truly is everywhere. The JavaFX
family will make it easier than ever to build and
quickly deploy rich Internet applications and
interactive content on clients ranging from the
browser to devices.

The JavaFX product family leverages the Java
platform’s write-once-run-anywhere portability,
application security model, ubiquitous
distribution and enterprise connectivity

Today’s Internet offers a world of possibility
for those who can quickly develop and deploy
rich internet applications (RIAs). But only the
Java platform is pervasive enough on mobile
devices and browsers to effectively marry client-
and browser-based technologies with RIAs
enabling applications to run on multiple
platforms virtually unchanged. JavaFX is Sun’s
new product family that addresses this market.
JavaFX Script will enable developers to more
quickly and easily develop RIAs and next-
generation services that can be proliferated
across virtually any device — from desktop
browsers and mobile devices, to set-top boxes
and Blu-ray Discs — securely and without local
installation. JavaFX Mobile software makes these
types of applications a reality for the mobile
world.

JavaFX

Fig: JavaFX Video Player

 Oct-07 Java Jazz Up 11

I. JavaFX Mobile

JavaFX Mobile is a complete mobile operating
and application environment built around Java
and Linux open source technologies.

It is a complete, fully integrated Java software
system for advanced mobile devices designed
to enable developers to author rich, high-impact
content and network-based services. Built
around open and standards-based
technologies, JavaFX Mobile enables control and
flexibility for the mobile ecosystem.

Being centralized around Java technologies,
JavaFX Mobile software system provides a
greater scalability and portability, speed time-
to-market, and enhances the consistency of
applications and services. Additionally, it also
provides a support for Java ME applications and
other standard Java APIs which enables a broad
range of new and existing Java applications.

It is like the networking in your hand. It is based
on open standards. JavaFX Mobile runs on all
mobile phones with Java support e.g. Nokia
N800.

JavaFX Mobile, Sun’s software system for mobile
devices, is available via OEM (i.e. Original
equipment manufacturers) license to carriers,
handset manufacturers and others seeking a
branded relationship with consumers. Through
OEM multiple companies can simplify and
accelerate the development of powerful
standardized software systems to leverage the
power across a wide range of consumer devices.

Additionally, It allows content creators to create
rich media content without relying on
developers, allowing the drag and drop of
desktop and mobile content, which is not
possible with any other RIA.

Get Ready for Dynamic Interactive Content
on Any Device: It is unpredictable to guess
what devices or platforms the end user is using;
however with JavaFX, you don’t have to worry
about the things. JavaFX Mobile uses industry
standard technologies—this means that
applications built with JavaFX can run on a wide
range of Java-enabled devices, and content
providers can add them to their devices quickly.
JavaFX Mobile includes the latest standards, like
the Mobile Services Architecture, set of device
APIs, which allows developers to have a rich
set of highly portable capabilities.

JavaFX

12 Java Jazz Up Oct-07

End users always look for an exciting and
dynamic content on the web and expect a better
interactive experience with web services. JavaFX
helps in delivering visually compelling
applications, such as maps and mashups, video,
audio, and pictures, that is standardize across
cell phones, TVs, and more.

Reduced Integration Costs with Expanded
Opportunities: Implementation of the majority
of the solution in Java, including middleware
and resident applications, JavaFX Mobile reduces
integration costs, improves device software
consistency, and enables device manufactures
to provide new offerings with substantially faster
time-to-market.

JavaFX Mobile Architecture:
JavaFX Mobile streamlines the environment

and reduces reliance on underlying technologies
by providing a complete middleware and
application stack implemented in Java.

II. JavaFX Scripting Language

JavaFX Script is specifically designed to
optimize the creative process of building rich
and compelling UIs leveraging Java Swing, Java
2D and Java 3D for developers and content
authors.

In layman style - JavaFX lets you enjoy a
consistence user experience irrespective of
whatever device you are currently online with,
whether you are sitting in front of your desktop,
whiling away commuting time with your PDAs,
or relaxing at home.

JavaFX Script is a highly productive scripting
language for content developers to create rich
media and interactive content for deployment
on Java environments. Since JavaFX Script is
statically typed, it has the same code
structuring, reuse, and encapsulation features
that make it possible to create and maintain
very large programs using Java technology. It
gives Java developers the power to quickly
create content-rich applications for the widest
variety of clients, including mobile devices, set-
top boxes, desktops, even Blu-ray discs.
Content creators now have a simple way to
develop content for any Java Powered consumer
device.

With JavaFX, the start-ups, enterprises and
developers are free from issues like local
installation and performance degradation, they
can now quickly develop and deploy new secure
services for a variety of clients. This is going to
simplify the development of RIAs running across
a range of platforms.

JavaFX technologies being built around open
standards, offer consistency for apps and
services across different platforms.
Applications written with JavaFX Script have
WORA (write-once-run-anywhere) features and
application security support with enterprise
connectivity.
JavaFX Script is easier to understand and
maintain, above all the structure of the written
code closely matches the actual layout of the
GUI. JavaFX Script enables rapid development
of rich 2D interfaces in an easy fashion.

JavaFX Script offers an advantage of the Java
security model so that the consumers can have
a secure access to the assets (e.g., pictures,
music files, word documents) on their desktop.

The write once, run anywhere portability of Java
technology has helped to make it the world’s
most widely deployed application platform.

Features:

• JavaFX Script is going to work with all
major IDEs, including NetBeans.

• JavaFX Script is capable of supporting
GUIs of any size or complexity

• JavaFX Script makes it easier to use
Swing, one of the best GUI development
toolkits of its kind.

• JavaFX Script uses a declarative syntax
for specifying GUI components, so a
developer’s code closely matches the
actual layout of the GUI.

• Through declarative data-binding and
incremental evaluation, JavaFX Script
enables developers to easily create and
configure individual components by
automatically synchronizing application
data and GUI components.

JavaFX

 Oct-07 Java Jazz Up 13

Benefits with JavaFX Script

• Increases developer productivity
• Zero loss of functionality across devices
• Requires less code
• Enables faster development cycles
• Offers an intuitive language design

Download the JavaFX Code, Join the
Community

Go to openjfx.org to join the JavaFX community
and download the JavaFX Script alpha code.
Contribute to it and participate in Sun’s ongoing
enhancement of the new family of Java products

JavaFX

14 Java Jazz Up Oct-07

It is a natural phenomenon to think about
learning and adopting new technologies while
there exists some well-established and popular
ones. It is the scenario prevailing with the
development of software for small, resource-
constrained devices such as cell phones, PDAs
and set-top boxes.

Today, Java interferes every sphere of life with
its incredible variety of platforms and APIs like
Java SE, Java EE, Java ME, Java FX, internet
TV, Telephony, embedded Systems and a lot
more. Java started small, aimed at television
set top boxes and other interactive devices.
As soon as it aimed toward web browsers and
applets, it got the wings to explore the unlimited
horizons. As a result, the platform got all kinds
of amazing features like Swing, Java 2D, Java
3D, JDBC, EJB, and so on. And in a very short
span of time, Java with its diverse specifications
start accommodating the wide variety of device
capabilities and features.

From smart cards to mobile phones to
enterprise applications and supercomputers,
Java technology has become one of the world’s
most significant and pervasive platforms. Java
technology is truly everywhere.

Emergence of Java ME

As time and technology moved on, Sun
recognized the need to collect the device-
oriented platforms under one umbrella. At
JavaOne in 1999, Sun introduced the Java 2
Micro Edition. J2ME (now Java ME) is not a
specific virtual machine, API, or specification.
Instead, J2ME provides a modular, scalable
architecture to support a flexible deployment
of Java technology to devices with diverse
features and functions.

In computing, the Java Platform, Micro Edition
or Java ME is a specification of a subset of the
Java platform aimed at providing a certified
collection of Java APIs for the development of
software for small, resource-constrained
devices such as cell phones, PDAs and set-top
boxes.

Java ME was designed by Sun Microsystems
and is a replacement for a similar technology,

PersonalJava. Originally developed under the
Java Community Process as JSR 68, the
different flavors of Java ME have evolved in
separate JSRs. Sun provides a reference
implementation of the specification, but has
tended not to provide free binary
implementations of its Java ME runtime
environment for mobile devices, rather relying
on third parties to provide their own. As of 22
December 2006, the Java ME source code is
licensed under the GNU General Public License,
and is released under the project name
phoneME.

Java ME has become a popular option for
creating games for cell phones, as they can be
emulated on a PC during the development stage
and easily uploaded to the phone. This contrasts
with the difficulty of developing, testing, and
loading games for other special gaming
platforms such as those made by Nintendo,
Sony, Microsoft, and others, as expensive
system-specific hardware and kits are required.

Java ME: Usage

 Java ME includes flexible user interfaces,
robust security, built-in network protocols, and
support for networked and offline applications
that can be downloaded dynamically.
Applications based on Java ME are portable
across many devices, yet leverage each device’s
native capabilities.

Java ME devic es implement a profile, the most
common of these are the Mobile Information
Device Profile aimed at mobile devices, such
as cell phones, and the Personal Profile aimed
at consumer products and embedded devices
like Set-top boxes and PDAs.Profiles are subsets
of configurations, of which there are currently
two: the Connected Limited Device
Configuration and the Connected Device
Configuration. A Java ME “configuration”
targets devices with a specific range of
capabilities. A “profile” selects a configuration
and a set of APIs targets a specific domain of
applications. Selection of the best configuration
and profile enables a vendor to produce a wide
range of flexible applications. The lightweight
appliances do not need to support the entire
Java platform which promotes the use of

Java Platform Micro Edition

 Oct-07 Java Jazz Up 15

modular extensions of the platform allowing the
vendors to differentiate themselves by
producing innovative applications and
incorporating value-added features.

Java ME Platform, technology alone provides the
true open solution for building secure mobile
applications for the industry. It allows the
portability of applications between the platforms
and simultaneously keeps the investments to a
minimum through the possibility of reuse. The
increasing demands for capabilities and
performance in the industry drives the
continuous java platform evolution which is
assured through the definition of the platform
components and APIs in the Java Community
Process. The community of developers creating
applications for the Java ME platform is large
and increasing at a good pace because it is open
for everyone to use.

Quick Glance: Java ME
Technology Ecosystem

Being open to all , Java ME assures the
continuous improvement and availability of
applications for different platforms which in turn
drives business for everybody involved in the
eco-system. This ecosystem is evolving around
a number of different players in the industry,
all of them participating in, and influencing, the
continuous improvement of the technology and
platform.

The end users are the drivers of the system
who constantly demand new features and
capabilities to enhance the prevailing services.
This forces the content developers, OEMs and
Carriers to work in sync and generate the best
result to meet the demands.

The content developers adopt the user
requirements and creates new appealing services
with new capabilities.

The OEMs (i.e. Original equipment
manufacturers) creates new capable devices
to host the new services and features and
also creates new demands by presenting new
capabilities to the end users.

Carriers create the mobile environment to host
and deploy services on and also drives the
exploration of new business-driving services to
the end users. This constant evolution of
demands and capabilities is the single most
important reason for the success of the Java
platform and ensures it will continue to evolve
into the future needs of everyone involved in
the eco-system.

Fig: Java ME Technology Ecosystem

Java ME platform consists of a number of
specified components. It has been defined, and
are continuously improved and developed, by
the industry through the Java Community
Process. This ensures the ongoing evolution
and adoption of the platform by inviting all
players in the industry to participate in the
definition of the platform and its capabilities.

The Mobile & Embedded community site
establishes a central location for the
collaborative development of open source Java
ME technologies and applications. Deployed in
over 1.5 billion mobile and embedded devices,
Java ME represents the ideal development
platform for the creation and deployment of
mobile data services. By open sourcing
implementations of Java ME, Sun will enable the
community to accelerate platform innovation,
reduce development costs through the Java ME
ecosystem, and, ultimately, drive a more
consistent application platform.

Getting Hands On to Java ME

Writing a Java ME application is different from

Java ME

16 Java Jazz Up Oct-07

writing the classical java application. Though it
uses the same basics programming constructs
as used with Java SE applications. Java ME
platform provides a better space to develop
games and applications for small devices like
PDA’s and handheld devices.

Basically there are two types of configurations
involved in Java ME application development
which are:

• CLDC (Connected Limited Device
Configuration)

• CDC (Connected Device Configuration)

Architecture

Java ME architecture consists of layers highly
compatible with the native environment (i.e. OS)
of the device. These layers are collectively known
as the Connected Limited Device Configurations
(CLDC). The CLDC installed on the OS forms a
tine environment for small computing device.
The Java ME Architecture comprises of three
software layers:

• The first layer is the configuration layer
that includes the JVM, which directly
interacts with the native OS. The
Configuration layer also handles the
interaction between the profile and the
JVM.

• The second layer is the profile layer which
consists of the minimum set of application
programming interface (API) for the small
devices.

• The third layer is the Mobile Information
Device profile (MIDP) layer. The MIDP layer
contains java APIs for user network
connections, persistence storage, and the
user interface. It also has access to CLDC
libraries and MIDP libraries.

Connected Limited Device

Configuration (CLDC): This Configuration is
much popular among the developers community
to build the Java ME applications. CLDC defines

the core set of API and a virtual machine for
resource-constrained devices like mobile
phones, pagers, and mainstream personal digital
assistants.. There are two versions of CLDC:
First one is CLDC1.0 which was released in 2000
and very soon it was termed as Java
Specification Request (JSR) 30. Second one is
CLDC1.1 or more specifically as JSR 139
However 1.0 is much popular in use. When CLDC
is coupled with a profile such as the Mobile
Information Device Profile (MIDP), it provides a
solid Java platform for developing applications
to run on devices with limited memory,
processing power, and graphical capabilities.

Connected Device Configuration (CDC):
Developed under the Java Community Process
(JCP), it is a standard framework of Java
technology used for building and delivering
application that can be shared over a wide range
of networks and devices ranging from pagers,
mobile phones, set top boxes and other PDA
devices. It comes in two flavors: First one is
JSR 36 (CDC 1.0) and second one is JSR 218
(CDC 1.1).

Mobile Information Device Profile (MIDP):
The MIDP specification was defined through the
Java Community Process (JCP) by an expert
group of more than 50 companies, including
leading device manufacturers, wireless carriers,
and vendors of mobile software. MIDP provides
a standard Java runtime environment for various
mobile devices. It defines a platform for
dynamically and securely deploying optimized,
graphical, networked applications.

MIDP, when combined with the CLDC, provides
the Java runtime environment for the compact
mobile information devices, such as cell phones
and mainstream PDAs. Developers can develop
application once and then redistribute them into
various mobile information devices in a very small
period of time with help of MIDP. Its principal
functions include to provide the user interface,
network connectivity data storage and overall
application process management. The Mobile
Information Device Profile (MIDP) is a key element
of the Java Platform, ME.

There are two versions of MIDP: First one
MIDP 2.0 or JSR 118 and second one MIDP

Java ME

 Oct-07 Java Jazz Up 17

1.0 or JSR 37.

The Java ME Application Development

I. System Requirements - Hardware

Minimum hardware requirements are:

• 100 MB hard disk space
• 128 MB system RAM
• 800 MHz Pentium III CPU

II. Minimal Software Requirement

• IDE – Sun ONE Studio 4, Mobile Edition,
(formerly Forte for Java)

• GUI – Sun Java ME Wireless Toolkit
2.5.1 (WTK 2.5.1) for CLDC

For Windows:

Download the Sun Java Wireless Toolkit for
CLDC from http://java.sun.com/products/
s j w t o o l k i t / d o w n l o a d . h t m l
Ensure that you have installed an appropriate
Java SE environment.

Run the installer, sun_java_wireless_toolkit-
2_5_1-windows.exe. Follow the instructions
provided by the installer.

For Linux:

Download the Sun Java Wireless Toolkit for
CLDC from http://java.sun.com/products/
s j w t o o l k i t / d o w n l o a d . h t m l
Ensure that you have installed an appropriate
Java SE environment.

Run the installer, sun_java_wireless_toolkit-
2_5_1-linux.exe. Follow the instructions
provided by the installer.

III. Steps to install Sun Java ME Wireless
Toolkit 2.5.1 (WTK 2.5.1) on the Windows
platform.

• Download the installer file i.e.
netbeans_mobility-5_5_1-win.exe

• Double Click the icon of downloaded exe.

You will see a similar window as shown
below.

Step 2: Now a welcome page of the install Shield
wizard for Sun Java(TM) Wireless Toolkit 2.5.1

for CLDC appears, click the button with label
“Next”. It is shown below
Step 3: Now a “License Agreement” window
opens. Just read the agreement and click

Java ME

18 Java Jazz Up Oct-07

“Accept” button to accept terms and conditions.
Then click “Next”
Step 4: Click on “Browse” button and choose
your installation directory. Here it is chosen as
“C:\jdk1.5.0_07”. Now click on “Next” button.
Now the installation wizard searches for

compatible JDK installations at the specified
location.
Step 5: Choose the Destination Folder for the

installation of the Sun Java(TM) Wireless Toolkit
2.5.1 for CLDC.
Step 6: Click the “Next” button to choose the
installation directory of Runtime Environment.
We prefer not to change it. So click “Next”

button. When installation is complete, click
“Finish” to exit the installation wizard process.

Step 7: Click “Next” button to start the
installation process.

Java ME

 Oct-07 Java Jazz Up 19

Step 8: Click the check button to activate the
“Product Updates” features.

Step 9: Ultimately, A window appears indicating
the successfully completion of installation
of WTK2.5.1. Click “Finish” button to exit the
installation process.

IV. Now we are ready to create an
application with Java Platform ME. Lets
create a new project with the following
steps:

Step 1: Go to Windows start panel and choose

“Wireless Toolkit 2.5.1” as:
Start > Programs > Sun Java Wireless Toolkit
2.5.1 for CLDC > Wireless Toolkit 2.5.1.
The console window appears like this.

Step 2: Now, Click the “New Project” on the

toolkit menu bar, then a new project box opens.
Fill the appropriate Project name and MIDlet
class Name of your choice. After that, click
Create Project button.
Step 3: Then a “Settings for project” window
appears. For default settings, click OK. It is

better to choose the default settings for a
beginner. However you can choose your own
settings too, to affect the build environment

for the project.

Step 4: Next appears a window indicating the
updated project settings saved in the Console.
Step 5: Now we need to develop a simplest

Java ME

20 Java Jazz Up Oct-07

program like “RoseindiaMIDlet.java” and save
it in the location

“C:\WTK2.5.1\apps\Roseindia\src\”.
import javax.microedition.lcdui.*;
import javax.microedition.midlet.MIDlet;
public class RoseindiaMIDlet extends MIDlet
implements CommandListener {
public void startApp() {
Display display = Display.getDisplay(this);

Form mainForm = new
Form(“RoseindiaMIDlet”);
mainForm.append(“Welcome to
www.Roseindia.net”);
Command exitCommand = new
Command(“Exit”, Command.EXIT, 0);
mainForm.addCommand(exitCommand);
mainForm.setCommandListener(this);
display.setCurrent(mainForm);
}
public void pauseApp()
{
}
public void destroyApp(boolean
unconditional) {}
public void commandAction(Command c,
Displayable s)
{
if (c.getCommandType() == Command.EXIT)
notifyDestroyed();
}
}

Step 6: Next click the “Build” button from the

toolkit menu bar. This causes the Sun Java
Wireless Toolkit for CLDC to compile and
preverify the Java source files. The whole build
process is shown below.

Step 7: Next click the “Run” button from the
toolkit menu bar. This executes the compiled
Java class files on the emulator.
Step 8: Execution of the compiled Java class

Java ME

 Oct-07 Java Jazz Up 21

files on the emulator gives the following
customized output. This output window have

proper event handlers attached with each
button.
Step 9: When you press any non-numeric key,
an output with a message flashes on the screen.

We will dig the things deeper in the forth coming
issue.

Java ME

22 Java Jazz Up Oct-07

Java Champions Program

The Java Champions program was launched in
June 2005 at the JavaOne Conference in San
Francisco.

Sun recognized that there are leaders in the
Java Developer Community. The Java
Champions program is an effort to strengthen
and encourage this community of leaders. As a
part of the Sun Community Champions
program, the title is created to recognize the
aspirants in the various aspects of the Java
technology ecosystem—including authors,
trainers, professors, researchers, developers,
and JUG leaders.

The Java community itself nominates most
candidates, and selects new Java Champions
through a peer review process. Out of a pool
of nearly 6,000,000 Java developers worldwide,
there are more than 85 Java Champions - so it
is an elite group.

When excited individuals form into committed
groups that develop new and interesting ways
to promote the Java Platform, then communities
of passionate “Champions” is born. Though it’s
possible to compete with individual products
however it’s tough to compete against the
entire communities.

The Java Champions program is sponsored by
Sun Microsystems and is an effort to recognize
leaders in the Java Community and invite them
to participate in the development of the Java
platform in collaboration with Sun engineers and
Java Luminaries.”

Java Champions Community aims to build an
informal group of Java technology proponents
outside of Sun Microsystems to which the Java
Development team and engineers could have
meaningful discussions with. Champions from
within Java Eco-System includes:

• Java Luminaries: senior developers;
architects; consultants; conference
speakers, etc

• Academics/University Professors
• Authors of Java-related content (online

& print)

• Java User Group (JUG) Leaders and the
Leaders of online Java portals

Sun wants to engage and recognize the
segments within the Java Eco-System through
the Java Champions program. Sun wants to
give these leaders the chance to provide
feedback, ideas, and direction to grow the Java
Platform. This interchange may be in the form
of technical discussions and/or community-
building activities with Sun’s Java Development
and Technology Outreach teams. Sun shares a
common goal with the Java developer
community i.e. the technology adoption of the
Java Platform by software developers world-
wide.

Five Principles to Become a Java
Champion Candidate:

A Java Champions selection committee
(over 50 members) has been formed to help
out the selection of new champions to this
online community.

Here are some of the guidelines for selecting
the new champions and they are being used
by the committee (one or several principles may
be applied during the selection process):

Principle 1: Java Champions are Leaders...If
a candidate is leading a Java related project, a
JUG community, or an online Java portal they
will be considered.

Principle 2: - Java Champions are
Luminaries in their field.... So the candidate
should be a Java engineer or an architect who
is relatively a senior and have lots of
experiences.

Principle 3: - Java Champions should have
Credibility. The candidate can be neutral, for,
or against Sun. Also, a Champion can still write
anything or publish any material that may be
pro, neutral or con towards Sun; unless there
is a litigious issue.

Principle 4: - Java Champions are involved
with some “really cool” applications of Java
Technology or are involved with some sort of
humanitarian or educational effort. The
application must be openly available to the Java

 Know the Java Champions

 Oct-07 Java Jazz Up 23

Community (online or in print) vice a company
proprietary or government classified project.

Principle 5: - Java Champions are able to
Evangelize or influence other developers
through their own professional activities
(Example: Consulting, University Professors,
Book Authorship, etc.)

Nomination Process: How to be a part of
Champions Team Participation is limited and
only interested java.net members are needed
to apply to this java.net Project.

HOW THE JAVA CHAMPIONS ARE
NOMINATED BY THE JAVA CHAMPIONS
SELECTION COMMITTEE : When started the
process (Jun ’06), Initially they looked around
within the Java Community for leaders in the
various parts of the Java Eco-System (like JUG
leaders, authors, trainers, professors,
researchers, etc.). From there the program grew
into a “community nomination” process,
which is unique, and have a real strength. The
community itself nominates most nominees and
selects the new Java Champions through a peer
review process. The criteria used in the peer
review have been listed above as the (5)
Principles.

COMMUNITY SIZE? - Currently, there are
about 85 Java Champions around the world,
with another 20 or so in the selection process
queue. Once they get up to 100 or more then
they will evaluate the issue like how many more
would be appropriate for the program. The idea
is always to build a community of Java
Champions that reflects the top echelon of
contributors to the Java Community.

HOW DO THEY NOMINATE A JAVA
CHAMPION? - If someone influential (in their
Java Community and/or is an advocate for the
Java platform or Java tools) is known to you
then please nominate him by sending an email
to the Java Champions selection committee
with the following information:

Note: The candidate’s contributions to the Java
Community must be available to its members
either online or in readily available print media.
Proprietary or government classified projects

while innovative are not available to general
public. Nomination MUST cite specific examples
(URLS, book names, presentations, etc) of the

**candidate’s direct contributions
** in order for them to be considered by the
selection committee.

(NOMINATION FORMAT in email)

Name:

email address:

Category of advocate:
[Java Engineer/Architect,
Author, Professor/Instructor,
Consultant, Trainer,
Other community member]

Reason for
nomination : Please see Java

Champion (5)
Principles. Also, please
include any URL links
to the person’s online
bio (if they have one),
blog, published
material, JUG group-
they belong to, etc.
and 1-2 sentences on
why this person would
be a good addition to
our community)

Nominations can be
sent via email : Java Champions “at”

sun.com

Sun’s goal for the Java Champions project is
to build a community of representative Java
leaders with whom Sun could have
conversations with about the state of the Java
Platform. Sun Microsystems sponsors this
project through certain administative functions,
but the community is free to elect its own
members. Sun’s engineers are also participating
in dialogues with the Java Champions through
the project’s private mailing lists.

Know the Java Champions

24 Java Jazz Up Oct-07

Let’s talk about our #1 Honorary
Champion: James Gosling

“James Arthur Gosling” - Father of Java

James A. Gosling, O.C., Ph.D (born May 19,
1955 near Calgary, Alberta, Canada) is a famous
software developer, best known as the father
of the Java programming language.

Education and career :

In 1977, James Gosling received a B.Sc in
Computer Science from the University of
Calgary. In 1983, he earned a Ph.D in Computer
Science from Carnegie Mellon University, and
his doctoral thesis was titled “The Algebraic
Manipulation of Constraints”. While working
towards his doctorate, he wrote a version of
emacs (gosmacs), and before joining Sun
Microsystems he built a multi-processor version
of Unix[1] while at Carnegie Mellon University,
as well as several compilers and mail systems.

Since 1984, Gosling has been with Sun
Microsystems, and is generally known best as
the founder of the Java programming language.

Contributions :

He is generally credited as the inventor of
the Java programming language in 1994. He
did the original design of Java and implemented
its original compiler and virtual machine. For
this achievement he was elected to the United
States National Academy of Engineering. He has
also made major contributions to several other
software systems, such as NeWS and Gosling
Emacs. He also cowrote the “bundle” program,
a utility thoroughly detailed in Brian Kernighan
and Rob Pike’s book The Unix Programming
Environment.

He also built a WYSIWYG text editor, a

constraint based drawing editor and a text
editor called ‘Emacs’ for Unix systems.

Over the years he has built satellite data
acquisition systems, a multiprocessor version
of Unix, several compilers, mail systems and
window managers, as well as text and drawing
editors.

At Carnegie-Mellon University in Philadelphia, he
did his doctorate where he developed a text
editor called “Emacs,” which became the most
widely used Unix text editor. After completing
his doctorate in computer science in 1983, Dr.
Gosling worked briefly as a researcher for IBM
and then, in September 1984, accepted an
invitation to join a small startup company in
California - Sun Microsystems. There he pursued
his interest in networking techniques and
products. In 1990 he became part of a team
called the Green project that was developing
new networking tools. The rise of the World
Wide Web enabled him to conjure up a system
where “applets” of applications move through
the Internet and provide multimedia capabilities
on any computer. Launched in 1995, Java has
freed programmers from the confines of
proprietary systems. Applications can run on
computers across the Internet regardless of
the operating system they use.

At Sun his early activity was as lead engineer
of the NeWS window system. He did the original
design of the Java programming language and
implemented its original compiler and virtual
machine.

Currently, he is acting as Vice President and
Sun Fellow with Sun Microsystems Inc. and
actively contributing in sun’s new innovations
and products. He is still exploring the new java
horizons.

Honours :

In Feb 2007, he was appointed as an Officer of
the Order of Canada. The Order is Canada’s
highest civilian honour. Officers are the second
highest grade.
Personal Corner:He enjoys being an amateur
chef and living in Redwood City, halfway between
San Francisco and San Jose, with his wife Judy
and daughters Kate and Kelsey.

James Gosling

 Oct-07 Java Jazz Up 25

Books: He is also making a great contribution
in providing the technical stuff. Here is a listing
of his great contributions:

• James Gosling, Bill Joy, Guy L. Steele Jr., Gilad
Bracha, The Java Language Specification,
Third Edition, Addison-Wesley Professional,
2005, ISBN 0-321-24678-0

• Ken Arnold, James Gosling, David Holmes,
The Java Programming Language, Third
Edition, Addison-Wesley Professional, 2000,
ISBN 0-201-70433-1

• James Gosling, Bill Joy, Guy L. Steele Jr., Gilad
Bracha, The Java Language Specification,
Second Edition, Addison-Wesley, 2000, ISBN
0-201-31008-2

• Gregory Bollella (Editor), Benjamin Brosgol,
James Gosling, Peter Dibble, Steve Furr, David
Hardin, Mark Turnbull, The Real-Time
Specification for Java, Addison Wesley
Longman, 2000, ISBN 0-201-70323-8

• Ken Arnold, James Gosling, The Java
programming language Second Edition,
Addison-Wesley, 1997, ISBN 0-201-31006-
6

• Ken Arnold, James Gosling, The Java
programming language, Addison-Wesley,
1996, ISBN 0-201-63455-4

• James Gosling, Bill Joy, Guy L. Steele Jr., The
Java Language Specification, Addison
Wesley Publishing Company, 1996, ISBN 0-
201-63451-1

• James Gosling, Frank Yellin, The Java Team,
The Java Application Programming
Interface, Volume 2: Window Toolkit and
Applets, Addison-Wesley, 1996, ISBN 0-
201-63459-7

• James Gosling, Frank Yellin, The Java Team,
The Java Application Programming
Interface, Volume 1: Core Packages,
Addison-Wesley, 1996, ISBN 0-201-63453-
8

• James Gosling, Henry McGilton, The Java
language Environment: A white paper, Sun
Microsystems, 1996

James Gosling

26 Java Jazz Up Oct-07

JBoss Seam is a powerful new application
framework developed by JBoss, a division of
Red Hat for building next generation Web 2.0
applications. It unifies and integrates
technologies such as Asynchronous JavaScript
and XML (AJAX), Java Server Faces (JSF),
Enterprise Java Beans (EJB3), Java Portlets and
Business Process Management (BPM) into a
single unit i.e. SeamSeam is designed from the
ground, up to eliminate the complexities at the
architecture and the API level. It enables
developers to assemble complex web
applications with simple annotated Plain Old Java
Objects (POJOs), componentized UI widgets
and very little XML. The simplicity of Seam 1.0
will enable easy integration with the JBoss
Enterprise Service Bus (ESB) and Java Business
Integration (JBI) in the future.

Previously, creating J2EE 1.4 applications,
especially those involving web-based user
interface and back-end EJBs, required a lot of
tedious coding. Now JEE 5 and EJB 3, with their
focus on lightweight Java support, have planned
to reduce the code bloat for the developers.
However the specifications for JEE 5 along with
EJB3 are still not yet finalized, there is already
a framework available i.e. JBoss Seam, this
framework is built on top of JEE 5 and EJB3. It
aims to further reduce the code required for
building a functional application. Seam being, a
component framework promises to deliver full-
featured JEE 5 applications in a lightweight code
base i.e. requiring only a fraction of the code of
regular JEE applications.

JBoss Seam is a flexible web application
framework introduced for Java EE 5. It
eliminates the traditional tedious coding using
clever architecture. Seam provides a consistent

and easy to understand streamlined
programming model for developing web based
applications. Seam enables to access any back-
end EJB 3.0 component from the front-end
simply by addressing it with the Seam
component name.

JBoss Seam is compatible with most of the
available application servers which support EJB
3.0 public draft and JSF 1.1 implementation.
Seam is also usable with JBoss Micro- container
and Hibernate due to its unique approach to
maintain state management while not plugging
into Java EE 5 and EJB 3.

Seam framework provides a command line tool
seam-gen that can automatically generate a
CRUD (create-read-update-delete) web
application from the existing database. Seam
provides the concept of declarative application
state management for POJO component that
means Seam extends annotations defined in
EJB 3.0 having a new set of annotations for
declarative state management, declarative
context demarcation, state validation and
eliminating XML required by plain JSF.

Every Seam component exists within a context
as seam components are stateful and contextual
having a well defined container-managed
lifecycle. This approach helps to fix the bugs
and performance problems results in plague web
applications having non-linear or multi-window
navigation. Seam integrates with the JBoss
jBPM deeply to make the business process
management, a first class construct. Seam also
simplifies testing Java EE 5 applications in unit
test framework by enforcing the JBoss
Embedded EJB3 container. In other words, we
can say that Seam is completely for enhancing
developer’s productivity and application
scalability.

JBoss Seam: Web 2.0 Applications

 Oct-07 Java Jazz Up 27

Exploring the Strengths of Seam

1. The first application framework for
EJB 3.0

EJB 3.0 has totally changed the notion of
EJB components as coarse-grained, heavy-
weight objects to EJBs as lightweight POJOs
with fine-grained annotations. Seam eliminates
the distinction between the presentation tier
components and the business logic components
and brings a uniform component model to the
EE platform where any class may be an EJB.

Seam is providing a backward compatibility with
JEE i.e. it is not limited to Java EE 5.0 servers
that support EJB 3.0. Seam may be used in
any JEE environment, or even in plain Tomcat.
2. Integrate and Enhance Java EE
Frameworks

The core frameworks included in Java EE 5.0
are JSF 1.2 and EJB3.0. EJB 3.0 is nothing but
the light weight middle tier framework based
on POJO (Plain Old Java Objects). It is used for
data persistence and business services. JSF is
the component framework based on MVC
architecture meant for web applications
development. Most of the web applications
based on Java EE 5.0 do not have both EJB3
and JSF modules for business logic and front
end respectively. EJB3 configures services by
using annotations while JSF uses XML files.

Furthermore at the framework level EJB 3.0
and JSF components are not aware of each
other. Artificial facade objects enable the EJB 3
and JSF components to work together by tying

up the business components to web pages and
boilerplate code so that the method calls can
be made across the framework boundaries.
Seam is responsible for gluing these
technologies together.

Seam breaks the artificial layer between EJB3
and JSF and also integrates EJB3 and JSF by
using consistent and annotation-based
approach. Seam lets the developer to use the
“same kind of stuff”, annotated POJOs for all
the components of any application. Seam
applications are quite simple and includes less
significant code (for both Java as well as XML
code) while having the same functionality.

3. Web 2.0 Ready

Seam is mainly designed for the web
applications of the Web 2.0 style. Seam
supports AJAX (Asynchronous JavaScript and
XML) in various ways such that the Seam
components can directly access the custom
JavaScript library from the browser like a
JavaScript object. Seam supports an advanced
concurrency model that internally manages
multiple AJAX requests of a single user.

AJAX applications simplifies the frequent
requests to the server as compared to non-
AJAX applications. However the frequent
requests make it challenging to handle the
increase in database load. The database can
not handle the load if the database serves all
the request. To combat this challenging job
Seam provides an in-memory cache, which
provides a stateful persistence context. This
in-memory cache is capable to hold the
information throughout the session and hence,

JBoss Seam

28 Java Jazz Up Oct-07

leads to the reduction of the database round
trips.

Web 2.0 applications also manages complex
relational models for its data. Social networking
sites mainly manages and represents the
relationships among the users. Today, Seam is
the sole technology that supports lazy loading
for web application in the right direction.

4. A Web Framework that Understands
ORM

Today’s most of the applications use the
Object Relational Mapping (ORM) solutions.
However most of these applications use those
business and web frameworks which are not
designed for ORM. Such framework does not
even handle the persistence context throughout
the interaction lifecycle starting with a request
to render a response.

Initially Seam was designed to promote as a
ORM best practices. In case of Seam, no more
DAOs are required to write; only lazy loading
can work. Since the extended persistence
context behaves like a natural cache and reduces
database round trips therefore the ORM
performance greatly improves. Since Seam

integrates the ORM layer with the business and
presentation layer, therefore ORM objects can
be observed working directly.

5. POJO Services via Dependency
Bijection

Seam is a “lightweight framework” as it uses
POJO (Plain Old Java Objects) as its services
components. No framework dependent
interfaces or abstract classes exist in Seam
which does not allow the components to get
hooked into the applications. This generates a
curiosity to know the things like how do the
POJOs interact with each other to develop an
application and How do they interact with the
services of the container.

Seam uses the most commonly used designed
pattern known as “dependency injection” (DI)
to connect to the POJO components with each
other. Seam maintains the life cycle of all of its
component with the implementation of the DI
design pattern. Whenever a component uses
another component then it shows this
dependency to Seam with the help of
annotations. Seam decides the injection place
of this component according to the application’s
current state.

Let’s take a seam component say P which needs
to create another component say Q. It does
that simply by expanding the dependency and
“outjects” the component Q back to Seam for
another components say R to later use it. This
type of bi-directional dependency management
is known as dependency bijection.

6. Avoid XML Abuse

Java annotations play an important role to
express and manage the Seam configuration
metadata. In the beginning of J2EE, XML was
supposed as the better option for configuration
management. Framework designers put all the
configuration related information (such as Java
classes and method names) into the XML files.
However, it was not an optimised solution
because XML configuration files are repetitive
in nature i.e. already existing information in the
code is repeated just to connect the
configuration with the code and this makes an

JBoss Seam

 Oct-07 Java Jazz Up 29

application prone to errors. JEE developers refer
this problem as the “XML hell”. This way of using
the XML files is popular among the whole Java
community as “the XML abuse”. Java
community made the successful attempts to
replace these XML files with the introduction of
the annotations to the Java source code.

To promote the use of annotations at enterprise
level officials of the Java standardization body
introduced EJB3. EJB3 provides the options to
use the annotations in place of the XML file
and expands the sphere of annotation-based
programming model for the web application.
It doesn’t mean that XML is fully useless, XML
best suits for specification of web application
page flows and can also define the work flow of
the business process. XML files enable a user
to centrally manage the work flow of the entire
web application rather than to scatter the
information around the Java source file.

7. Designed for Easy integration
Testing

Seam is mainly designed to simplify the
testing process. Unit testing is easier with seam
as all the Seam components are nothing but
the annotated POJO. Simply one need to create
the POJO instances which can be tested with
different testing frameworks such as TestNG
and JUnit. If there requires any interaction
between the Seam components then just create
the individual instances of those components
and manually establish the relationship between
them.

Testing of the entire Seam application is a little
bit complex because it needs entire application
to run inside the Seam container. Seam comes
along with an embedded lightweight container
to handle the integrated testing. One can also
programmatically load the Seam container to
run the test into the test framework.

8. Designed for Stateful Web
Applications

Seam also designs stateful web applications
which are inherently multi-user. Today, most of
the business applications are stateful and
transactional. In case of Seam, all the

components of an application are stateful
therefore it is quite easy to use seam for
managing states as compared to HTTP session.
Seam applications does not require a developer
to write the state management code, but simply
it, itself annotates the scope of the
components, lifecycle methods and other
stateful properties required. Stateful
components of Seam also manages the user
states in a better way in comparison to
conventional HTTP sessions.

Seam automatically ties up the transactions and
the database caches with the application state.
It temporarily holds database updates in
memory and commits updates to the database
while ending the conversation. For complex
stateful applications, in-memory cache reduces
the database load of the application.

Seam takes state management in web
applications a big step further by supporting
integration with the Open Source JBoss jBPM
business process engine. One can now specify
the work flows of different people in the
organization (i.e., customers, managers,
technical support etc.) and use the work flow
to drive the application, instead of relying on
the UI event handlers and databases.

9. Great Tools Support

Seam simplifies to accomplish difficult tasks
with JSF. Generally, to bookmark a JSF web
page and get it via HTTP GET is hard.
Generating a bookmarkable resultful web page
with Seam is quite simple. Seam makes the
JSF applications efficient by providing a number
of JSF tags and use of annotations increases
the “web friendliness”.

Simultaneously, Seam expands the web tier to
the business components and also expands
the EJB3 component model to POJOs. Even
though Seam also integrates a number of
commonly used other open source framework
like JBoss Portal, jBPM, JBossMicrocontainer,
JBoss Rules etc.

Although Seam is integrated with Java EE 5.0,
it doesn’t mean that it is limited to Java EE 5.0
servers. Seam applications can also be deployed

JBoss Seam

30 Java Jazz Up Oct-07

in the J2EE 1.4 application servers as well as in
plain Tomcat servers.

Seam not only integrates various frameworks
into the one framework but also provides its
own managed stateful context allowing the
frameworks to deeply integrate with others
through annotations, EL (Expression
Language) expressions etc.

Seam provides a great tools support intended
to enhance the developers productivity. Seam
also comes with the command line application
generator which is known as the Seam Gen. It
generates complete CRUD applications from the
database. Additional support for tools with
seam increases the developers turn around time
by providing a better testing support and
supports for features like edit / save /reload
browser actions etc.

But more importantly, Seam Gen generated
projects work out-of-the-box with leading Java
IDEs such as Eclipse and NetBeans. With Seam
Gen, one can get started with Seam in no time!

JBoss Seam

 Oct-07 Java Jazz Up 31

Maven 2 Eclipse Plug-in
Plugins are great in simplifying the life of

programmers; it actually reduces the repetitive
tasks involved in the programming. In this
article our experts will show you the steps
required to download and install the Maven
Plugin with your eclipse IDE.

Why Maven with Eclipse

Eclipse is an industry leader in IDE market,
it is used very extensively in developing projects
all around the world. Similarly, Maven is a high-
level, intelligent project management, build and
deployment tool provided by Apache’s software
foundation group. Maven deals with application
development lifecycle management.

Maven–Eclipse Integration makes the
development, testing, packaging and
deployment process easy and fast. Maven
Integration for Eclipse provides a tight
integration for Maven into the IDE and avails
the following features:

• It helps to launch Maven builds from
within Eclipse

• It avails the dependency management
for Eclipse build path based on Maven’s
pom.xml

• It resolves Maven dependencies from
the Eclipse workspace without installing
to local Maven repository

• It avails an automatic downloading of
the required dependencies from the
remote Maven repositories

• It provides wizards for creating new
Maven projects, pom.xml or to enable
Maven support on plain Java project

• It helps to search quickly for
dependencies in Maven remote
repositories

• It quickly fixes in the Java editor for
looking up required dependencies/jars
by the class or package name.

What do you need?

1. Get the Eclipse Development

Environment

 In this tutorial we are using the eclipse-
SDK-3.3-win32, which can be downloaded from
h t t p : / /www.e c l i p s e . o r g / down l oad s /

2. Get Maven-eclipse-plugin-plugin

It is available at
http://mevenide.codehaus.org/maven-
eclipse-plugin-plugin/

Download and Install Eclipse

First download and install the eclipse plugin on
your development machine then proceed with
the installation process of the eclipse-maven
plugin.

Steps to Install the eclipse-maven
plugin

1. Open eclipse IDE and go to Help->Software
Updates-> Find and Install as shown in Figure
1 below:

32 Java Jazz Up Oct-07

2. Choose the way you want to search for the
features to install in the Install/update
window. It is show in the figure 2:

Now, Select the option “Search for new
features to install” and click on the “Next”
button.

3. An Install wizard appears as shown in Figure3

Now click on “New Remote Site…” and enter
the following details in the dialog box:

Name: Maven2Plugin
URL: http://mevenide.codehaus.org/
repository As shown in figure 4

Now click on “OK” button.

4. Then update the information of the sites to
visit for instance we have selected the
Maven2plugin site in the Eclipse update list
as shown in following figure (Figure 5)

Maven 2

 Oct-07 Java Jazz Up 33

5. Click on the “Finish” button. Update manager
starts searching for the updates as shown in
Figure 6

6. Then an Eclipse update window appears,
select “Maven2Plugin” check box as show
below:

Click on the “Next” button and then Accept
the terms and conditions in the next window
and click the next button.

7. Then, An Installation confirmation window

appears as shown below:

Click on “Finish” button to complete the
installation process.

8. Update manager will download the files and

install the Maven eclipse plugin for you.

9. Then the installer displays the Feature
Verification window as shown below:

Maven 2

34 Java Jazz Up Oct-07

Click on “Install All” button.

10. Finally the installer will display the following
message:

Now the Eclipse-Maven plugin is ready for use.

Maven 2

 Oct-07 Java Jazz Up 35

Tomahawk tags are collection of standard
components with extended functionality and
many more extra set of components with rich
set of functionality.

1-Tomahawk inputTextHelp tag

This tag creates an input text box but it has
extra ability to select or removing the text
displayed. This text is used to help the user
and is set by “helpText” attribute. The capability
of disappearing or selecting the text is provided
by “selectText” attribute of the tag. This tag
has additional feature of displaying value only,
not the widget of the box. This component also
has ability to be visible or not visible according
to the role of the user. In the same way, it also
has the ability to be enabled or disabled
according to the user role. Normally the naming
system of JSF renders the id for the component
with some additional text, typically with id of
the form, as prefix. But this component has an
attribute forceId, which forces the component
to render the same id mentioned in the id
attribute.

Code Description :

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<f:view>
<html>
<head>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:inputTextHelp example</title>
<style type=”text/css”>
<!—
body{
background-color:#fff2f2;
margin-top:30;
}
.inputstyle{
background-color:#99CCFF;
}
—>
</style>
</head>

<body ><center>

<t:inputTextHelp id=”ith1" value=””
helpText=”Hello....”
style=”color:#0033CC; font-weight:bold”
styleClass=”inputstyle” title=”inputTextHelp
example 1" /><p>
<t:inputTextHelp id=”ith2" value=””
helpText=”How are you?” selectText=”true”
style=”color:#0033CC; font-weight:bold”
styleClass=”inputstyle” title=”inputTextHelp
example 2" />
</center></body>
</html>
</f:view>

Rendered Output:

This is the output of the page. In this Hello....
and How are you? texts are the texts specified
in the helpText attribute of the tag.

If we take focus on the first component then
text in the component disappears while in the
other whole text is selected because of
setting the selectText attribute to true in the
second component.

JSF Tags: Tomahawk Tags

36 Java Jazz Up Oct-07

2-Tomahawk selectOneCountry tag

This tag is used to create the component,
which displays the list of countries in selection
box according to the locale.
Code Description:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>
<html>
<head>
<meta http-equiv=”Content-Type”
content=”text/html;charset=iso-8859-1">
<title>t:selectOneCountry example</title>
<style type=”text/css”>
<!—
body{
background-color:#fff2f2;
margin-top:30;
}
—>
</style>
</head>
<body >
<h:form><center>
<t:panelGrid columns=”2" style=”font-
weight:bold;”>
<t:outputLabel for=”name” value=”Name” />
<t:inputText id=”name”/>
<t:outputLabel for=”phone” value=”Phone
No.” />
<t:inputText id=”phone”/>
<t:outputLabel for=”country”value=”Country”
/>
<t:selectOneCountry id=”country”
maxLength=”16"
emptySelection=”Select Country”/>
</t:panelGrid>

</center>
</h:form>
</body>
</html>
</f:view>

Rendered Output:

3-Tomahawk selectOneLanguage
tag

This tag is used to create the component,
which displays the list of languages in selection
box according to the locale.

Code Description :

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>
<html>
<head>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:selectOneLanguage example</title>
<style type=”text/css”>
<!—
body{
background-color:#fff2f2;
margin-top:30;
}
—>
</style>
</head>
<body >
<h:form><center>
<t:panelGrid columns=”2" style=”font-
weight:bold;”>
<t:outputLabel for=”name” value=”Name” />
<t:inputText id=”name”/>
<t:outputLabel for=”phone” value=”Phone

Tomahawk Tags

 Oct-07 Java Jazz Up 37

No.” />
<t:inputText id=”phone”/>
<t:outputLabel for=”country”
value=”Country” />
<t:selectOneCountry id=”country”
maxLength=”16"
emptySelection=”Select Country”/>
<t:outputLabel for=”language”
value=”Language” />
<t:selectOneLanguage id=”language”
maxLength=”16"
emptySelection=”Select Language”/>
</t:panelGrid>
</center>
</h:form>
</body>
</html>
</f:view>

Rendered Output:

4-Tomahawk validateEmail tag

This tag validates the email address entered
in the field. We can render the validation
message using message, detailMessage and
summaryMessage attributes.

Code Description:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>

<html>
<head>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:validateEmail example</title>
<style type=”text/css”>
<!—
body{
background-color:#fff2f2;
margin-top:30;
}
—>
</style>
</head>
<body >
<h:form><center>
<t:panelGrid columns=”2" style=”font-
weight:bold;” width=”40%”>
<t:outputText value=”Name” />
<t:inputText id=”name”/>
<t:outputText value=”Phone No.” />
<t:inputText id=”phone”/>
<t:outputText value=”Email” />
<t:panelGroup>
<t:inputText id=”email” required=”true”>
<t:validateEmail message=”Enter valid
EmailID.”/>
</t:inputText>
<f:verbatim></br></f:verbatim>
<t:message for=”email”/>
</t:panelGroup>
<t:outputText value=” “ />
<t:commandButton id=”cb” image=”images/
submit_button.gif” action=”welcome”/>
</t:panelGrid>
</center>
</h:form>
</body>
</html>
</f:view>

Rendered Output:

Tomahawk Tags

38 Java Jazz Up Oct-07

If we enter wrong email id then the message
written is message tag is displayed like is the
figure below:

5-Tomahawk validateRegExpr tag

This tag is used to validate a string entered
by the user. If we want the user to enter a
specific pattern of string then we can set the
pattern for that component. For example, we
have an input field and we want the user to
enter a number that consists of any number
with “1” in the beginning but only one “2” at
the last. So for this, Tomahawk provides a tag
validateRegExpr, which has “pattern” attribute
that is used to specify the pattern to be followed
by the user while inputting the string in the
box. If the entered string is not following the
pattern then a message can be displayed using
“message” attribute.

Code Description:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<f:view>
<html>
<head>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:validateRegExpr example</title>
<style type=”text/css”>

<!—
body{
background-color:#fff2f2;
margin-top:30;
}
—>
</style>
</head>
<body >
<h:form>
<t:outputText value=”Enter any number
starting from any number of ‘1’s but ‘2’ at
last. “/></p>
<t:inputTextHelp id=”regExprValue”
helpText=”Like :12, 112, 11112"
required=”true”>
<t:validateRegExpr pattern=”1*2"
message=”Type correct Number.”/>
</t:inputTextHelp>
<t:message for=”regExprValue”/></p>
<t:commandButton id=”cb” image=”images/
submit_button.gif” action=”welcome”/>
</h:form>
</body>
</html>
</f:view>

Rendered Output:

This is the output of the above code:

Tomahawk Tags

 Oct-07 Java Jazz Up 39

If the user enters a wrong input then the
message is displayed like below:

6-Tomahawk validateEqual tag

This tag is used to validate the value against
the other component. In the for attribute we
specify the id of the other component whose
value is compared to the value of the
component for which the validation is
performed. If both are same then no error
otherwise it displays the validation message.
We can render the validation message by the
use of message, detailMessage and
summaryMessage attributes.

Code Description:

In this example, we have taken a hidden field
with value “999” and one more input component
where the user is asked to guess the number.
If both matches then next page are rendered
otherwise validation message “Try again...” is
displayed in the same page.

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>
<html>
<head>
<meta http-equiv=”Content-Type”

content=”text/html;
harset=iso-8859-1">
<title>t:validateEqual example</title>
<style type=”text/css”>
<!—
body{
background-color:#fff2f2;
margin-top:30;
}
—>
</style>
</head>
<body >
<h:form>
<center>
<t:panelGrid columns=”1" style=”font-
weight:bold;” width=”40%”>
<t:inputHidden id=”ih” value=”999" />
<t:outputText value=”Can you guess the
number?” />
<t:panelGroup>
<t:inputText id=”number” required=”true”>
<t:validateEqual for=”ih”
message=”Try again.......”/>
</t:inputText>
<f:verbatim></br></f:verbatim>
<t:message for=”number”/>
</t:panelGroup>
<t:commandButton id=”cb”
 image=”images/submit_button.gif”
 action=”welcome”/>
</t:panelGrid>
</center>
</h:form>
</body>
</html>
</f:view>

Rendered Output:

Tomahawk Tags

40 Java Jazz Up Oct-07

The output below is the result of bad
guessing of the number by the user.

7-Tomahawk validateCreditCard tag

This tag is used to validate a Credit Card
Number entered by the user. If we want the
user to enter a valid Credit Card Number
then validateCreditCard tag can do this
validation. If we don’t want to allow any of
the “American Express”,”Visa””mastercard” or
“Discover” then we can set value false for the
attributes “ameex”,”visa””mastercard” and
“discover” respectively. If we don’t want to
allow anyone then we can set value true for
the attribute “none”. If the entered value is
not a valid then we can display the message
of our interest by using “message” attribute.

Code Description:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<f:view>
<html>
<head>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<title>t:validateCreditCard example</title>
<style type=”text/css”>
<!—
body{
background-color:#fff2f2;

margin-top:30;
}
—>
</style>
</head>
<body >
<h:form>
<t:outputText value=”Credit Card Number:”/>
<h:inputText id=”creditCardNumber”
required=”true”>
<t:validateCreditCard message=”Invalid Credit
Card number.”/>
</h:inputText>
<t:message for=”creditCardNumber”/></p>
<t:commandButton id=”cb” image=”images/
submit_button.gif” action=”welcome”/>
</h:form>
</body>
</html>
</f:view>

Rendered Output:

This is the output of the above code:

If the number entered by the user is not valid
then error message is displayed like below:

Tomahawk Tags

 Oct-07 Java Jazz Up 41

Spring features remoting support using
various technologies. Remoting support eases
the development of remote-enabled services,
implemented with usual (Spring) POJOs.
Currently, Spring supports different remoting
technologies few of them are:

• Remote Method Invocation (RMI):
Through the use of the
RmiProxyFactoryBean and the
RmiServiceExporter, Spring supports
both traditional RMI (with
java.rmi.Remote interfaces and
java.rmi.RemoteException) and
transparent remoting via RMI invokers
(with any Java interface).

• Spring’s HTTP invoker: Spring
provides a special remoting strategy
which allows Java serialization via HTTP,
supporting any Java interface (just like
the RMI invoker). The corresponding
support classes are
HttpInvokerProxyFactoryBean and
HttpInvokerServiceExporter.

• Hessian: By using the
HessianProxyFactoryBean and the
HessianServiceExporter, one can
transparently expose his services using
the lightweight binary HTTP-based
protocol provided by Caucho.

• Burlap: Burlap is Caucho’s XML-based
alternative for Hessian. Spring provides
support classes such as
BurlapProxyFactoryBean and
BurlapServiceExporter.

• JAX RPC: Spring provides remoting
support for web services via JAX-RPC.

• JMS: Remoting using JMS as the
underlying protocol is supported via the
JmsInvokerServiceExporter and
JmsInvokerProxyFactoryBean classes.

In all these models, services are configured
into the application through the spring
configuration file known as spring managed

beans. This is accomplished by using a proxy
factory bean that enables to wire remote
services into the properties of our beans as if
they were local objects.

Spring provides ‘RmiProxyFactoryBean’ to
use the RMI service and ‘RmiServiceExporter’
to export any spring managed bean as a RMI
service.

For wiring a Hessian based service to Spring
client, Spring’s ‘HessianProxyFactoryBean’ is
used. To export a Hessian Service
‘HessianServiceExporter’ is used and similarly
for wiring a Burlap service
‘BurlapProxyFactoryBean’ is used and
‘BurlapServiceExporter’ is used to export a
burlap service. Similarly, for exporting beans
as HTTP invoker services,
‘HttpInvokerServiceExporter’ is used .To
access an HTTP invoker service
‘HttpInvokerProxyFactoryBean’ can be
used. Spring provides two proxy factory beans
to access the Enterprise Java Beans.
‘LocalStatelessSessionProxyFactoryBean’ is
used to access the EJB in the same
container(local) and another one is
‘SimpleRemoteStatelessSessionProxy
FactoryBean’ which is used to access the
remote EJBs.

For all the above models spring provides service
exporter classes that exports Java Beans as
remote service.

Spring does not provide any EJB Service
Exporter and it provides four abstract support
classes to make the development of Spring
enabled EJB. They are

1. AbstractMessageDrivenBean to develop
MDBs that accept sources other than JMS.
2. AbstractJmsMessageDrivenBean to
develop MDBs that accept messages from
JMS sources.
3. AbstractStatelessSessionBean to
develop stateless session bean.
4. AbstractStstefulSessionBean to develop
stateful session bean.
‘JaxRpcPostProxyFactoryBean’ is used to
wire a web service into the spring application.

Remoting with Spring

42 Java Jazz Up Oct-07

The client makes calls to the proxy to provide
the service and the proxy calls the remote
service on behalf of the client.Now let’s see -
how to wire other RMI services into spring
application and how to export our own services
using the RMI model

Remote Method Invocation (RMI) Model:
RMI was first introduced in JDK 1.1. But
developing and accessing RMI services
involves various steps and also have lookups
which makes the code hard to test. Spring
simplifies the RMI by providing a ‘proxy
factory bean’ that enables us to wire the
RMI services into spring application as if they
are local beans. Spring also provides a
remote exporter that converts our ‘spring
managed beans’ into RMI services.
Spring’s ‘RmiProxyFactoryBean’ is a
factory bean that creates a proxy to RMI
service. It is declared in the spring
configuration file under the <bean> tag as
follows,

<bean
id=”service1"class=”org.springframework.remoting.rmi.
RmiProxyFactoryBean”>
<property name=”serviceUrl”>
<value>rmi://${hostname}/service1</
value>
</property>
<property name=”serviceInterface”>
<value>service1</value>
</property>
</bean>

The url of the RMI service is set through the
‘serviceUrl’ property. The ‘serviceInterface’
property specifies the interface that the
service implements and only through that the
client invokes methods on the service.
For using the service the
implementation code is wired to the RMI
using the following code,

<bean id=”serviceimpl” class=”serviceimpl”>
<property name=”service1">
<ref bean=”service1"/>
</property>
</bean>

I. Lets Set up the Environment Variables
and start the things:

As the entire Spring Framework is included in
spring.jar. We use it to run our examples.

1 Copy spring.jar from spring1.2.9\dist
folder to the working folder (say
D:\springdemo), also copy commons-
logging.jar from apache tomcat- 6.0.10
to the working directory.

2 Set path for jdk1.4.2 and above
versions.

3 Now set the classpath as shown:
D:\springdemo\>set
classpath=D:\springdemo;
D:\springdemo\spring.jar;
D:\springdemo\commons-logging.jar;

4 For a typical Spring Application we need
the following files:

i. An interface that defines the
functions.

ii. An Implementation that contains
properties, its setter and getter
methods, functions etc.

iii. A XML file called Spring configuration
file.

iv.Client program that uses the
function.

II. Create the following files

1. rmserver.java
2. rmserverimpl.java
3. rmserver.xml
4. rmspring.java

1. D:\springdemo\rmserver.java

import java.rmi.*;
public interface rmserver extends Remote
{
String getresult(String s) throws
RemoteException;
}

Spring

 Oct-07 Java Jazz Up 43

2. D:\springdemo\rmserverimpl.java

import java.rmi.*;
import java.rmi.server.*;
public class rmserverimpl extends
UnicastRemoteObject implements rmserver {
public static void main(String args[]) {
try {
 rmserverimpl ob = new rmserverimpl();
 Naming.rebind(“rmserver”,ob);
 System.out.println(“ready”);
 }
catch(Exception e1) {
System.out.println(“”+e1);
 }
 }
public rmserverimpl() throws
RemoteException {
System.out.println(“constructor ok”);
 }
public String getresult(String a) throws
RemoteException
 {
 return “Hai...” + a;
 }
 }

3. D:\springdemo\rmserver.xml

<?xml version=”1.0" encoding=”UTF-8"?>
<!DOCTYPE beans PUBLIC “-//SPRING//DTD
BEAN//EN” ”http://
www.springframework.org/dtd/ spring-
beans.dtd”>
<beans>
<bean id=”rmserver”
class=”org.springframework.remoting.rmi.
RmiProxyFactoryBean”>
<property name=”serviceUrl”>
<value>rmi://localhost/rmserver</value>
</property>
<property name=”serviceInterface”>
<value>rmserver</value>
</property>
</bean>
 <bean
id=”rmserverimpl” class=”rmserverimpl”>
<property name=”rmserver”>
<ref bean=”rmserver”/>
</property>
</bean>
</beans>

4. D:\springdemo\rmspring.java

import java.rmi.*;
import org.springframework.beans.factory.*;

import
org.springframework.beans.factory.xml.*;
import org.springframework.core.io.*;
public class rmspring {
public static void main(String args[]) {
try {
System.out.println(“Wait..”);
Resource res = new
ClassPathResource(“rmi.xml”);
BeanFactory factory = new
XmlBeanFactory(res);
rmserver bean1 = (rmserver)
factory.getBean(“rmserver”);
String r=bean1.getresult(args[0]);
System.out.println(r);
}
catch(Exception e1) {
System.out.println(“” + e1);
}
}
}

III Compile and run the classes as
shown:

D:\springdemo>javac rmserver.java
D:\springdemo>javac rmserverimpl.java
D:\springdemo>rmic rmserverimpl (To create
stub and skeleton)
D:\springdemo>javac rmspring.java
D:\springdemo>start rmiregistry (a blank
window will appear)
D:\springdemo>java rmserverimpl
Open another Window and run the client
code by giving the argument
D:\springdemo>java rmspring “Amit”

We will get the output as:

Wait...
Sep 28, 2007 3:53:10 PM
org.springframework.core.CollectionFactory
<clinit>
INFO: JDK 1.4+ collections available
Sep 28, 2007 3:53:10 PM
org.springframework.beans.factory.xml.
XmlBeanDefinitionReader loadBeanDefinitions

Spring

44 Java Jazz Up Oct-07

INFO: Loading XML bean definitions from
class path resource [rmi.xml]point3
Sep 28, 2007 3:53:10 PM
org.springframework.remoting.rmi.
RmiClientInterceptor prepare
INFO: Using service interface [rmserver] for
RMI stub [rmi://localhost/rmserver] - directly
implemented Sep 28, 2007 3:53:10 PM
org.springframework.aop.framework.
DefaultAopProxyFactory <clinit>
INFO: CGLIB2 not available: proxyTargetClass
feature disabled
Hai Amit

Here we have removed the ‘lookup’ code in
the client side.

The Server side of RMI

Spring also supports the server side of RMI.
Here the service itself is written with spring and
it is exposed as an RMI service. Here the bean
is written as a simple JavaBean. Also we need
not to generate the stub and skeleton using
‘rmic’ command and manually add it to RMI
registry. Instead of these traditional procedure
‘RmiServiceExporter’ is used to export any
Spring managed bean as an RMI service. It
wraps the bean in an adapter class. The adapter
class is then bound to RMI registry and the
proxies request the service.

<bean
class=”org.springframework.remoting.rmi.
RmiServiceExporter”>
<property name=”service1">
<ref bean=”service1"/>
</property>

<property name=”serviceName”>
<value>service1</value>
</property>
<property name=”serviceInterface”>
<value>service1</value>
</property>
</bean>
The ‘serviceName property’ indicates the
name of service and ‘serviceInterface’
specifies the interface implemented by the
service. There is no need of ‘serviceUrl’ here.
First set the path and classpath as before.

Next edit the service i.e. rmservice.xml

1. D:\springdemo\rmservice.java

public interface rmservice {
String getresult(String s);
}

2. D:\springdemo\rmserviceimpl.java

public class rmserviceimpl implements
rmservice {
 public static void main(String args[]) {
 System.out.println(“ready”);
 }
 public rmserviceimpl() {
 System.out.println(“constructor ok”);
 }
 public String getresult(String a) {
 return “Hai”+a;
 }
}

3. D:\springdemo\rmservice.xml

<?xml version=”1.0" encoding=”UTF-8"?>
<!DOCTYPE beans PUBLIC “-//SPRING//DTD
BEAN//EN”
”http://www.springframework.org/dtd/
spring-beans.dtd”>

 <beans>
 <bean
class=”org.springframework.remoting.rmi.
RmiServiceExporter”>
<property name=”service”>
<value>rmservice</value>
</property>
<property name=”serviceName”>
<value>service1</value>
</property>
<property name=”serviceInterface”>
<value>rmservice</value>
</property>
</bean>
<bean id=”rmservice” class=”rmserviceimpl”>
</bean>
/beans>

Spring

 Oct-07 Java Jazz Up 45

4. D:\springdemo\rmserviceclient.java

import java.io.*;
import org.springframework.beans.factory.*;
import org.springframework.beans.factory.
xml.*;
import org.springframework.core.io.*;

class rmserviceclient {
 public static void main(String args[]) {
 try {
 System.out.println(“Wait..”);
 Resource res = new
ClassPathResource(“rmservice.xml”);

System.out.println(“wait..”);
BeanFactory factory = new
XmlBeanFactory(res);
System.out.println(“factory created”);
rmservice bean1 =
(rmservice)factory.getBean(“rmservice”);
String s = bean1.getresult(args[0]);
System.out.println(s);
}
catch(Exception e1) {

 System.out.println(“”+e1);
 }
 }
}

To run:

D:\springdemo>javac rmservice.java
D:\springdemo>javac rmserviceimpl.java
D:\springdemo>javac rmserviceclient.java
D:\springdemo>java rmsserviceclient “Amit”

We will get Output as:

wait.
wait...
Sep 28, 2007 3:16:22 PM
org.springframework.core.CollectionFactory
<clinit>
INFO: JDK 1.4+ collections available
Sep 28, 2007 3:16:22 PM
org.springframework.beans.factory.xml.
XmlBeanDefinitionReader loadBeanDefinitions
INFO: Loading XML bean definitions from
class path resource [rmservice.xml]
here comes....
constructor ok
Hai Amit

Here the service interface doesn’t extend the
‘java.rmi.Remote’ method and
‘RemoteException’ is not thrown by the
methods. There is no binding in the
implementation code. Also we can direcly run
the client. Now there is no need to run the
‘rmserverimpl’ class. Also there is no need to
run the RMI registry.

Spring

46 Java Jazz Up Oct-07

Java Architecture for XML Binding
Today, XML has emerged as the standard

for exchanging data across disparate systems,
and Java technology provides a platform for
building portable applications. They partners
naturally in helping developers to exchange data
and programs across the Internet.

Together, they are the most ideal building blocks
to develop Web services and Applications
accessing web services. This partnership is
particularly important for implementing Web
services, which provides the users and the
application developers, the program
functionality on demand from anywhere to
anywhere on the Web.

But how do you couple these technologies
together in practice? More specifically, what
matters much is the issue like how to access
and use an XML document (that is, a file
containing XML-tagged data) through the Java
programming language.

One way to do this is through parsers that
conform to the Simple API for XML (SAX) or
the Document Object Model (DOM), which is
perhaps the most typical way. Java API for XML
Processing (JAXP) provides both of these
parsers. Java developers invoke a SAX or DOM
parser in an application through the JAXP API
to parse an XML document — that is, scan the
document and logically break it up into discrete
pieces. The parsed content is then made
available to the application.

Now developers have another Java API which
makes it easier to access XML documents: Java
Architecture for XML Binding (JAXB).

A Reference Implementation of the API is now
available in the Java Web Services Developer
Pack 2.0 which makes it easier to access XML
documents from applications written with Java.

Java Architecture for XML Binding (JAXB) allows
java developer for mapping between the Java
classes and the XML representations. JAXB
allow us for marshalling of java objects into
XML and vice-versa i.e. unmarshalling of XML
documents back into the java objects. Or we
can say JAXB enables us to store and retrieve
the data in any XML format into the memory.

Storing and retrieving data from the memory
does not require any implementation to a specific
set of XML. JAXB is useful in situations where
specification is complex and changing. Regularly
changing XML schema definitions can be time
consuming and error prone as they keep the
XML schema definitions synchronized with the
java definitions.

Suppose one need to develop a Java application
that accesses and displays data in XML
documents.

One approach could be to use the SAX or DOM
parsers to access an XML document and then
display the data.

In that case, the user would need to:

• Write a program that creates a SAX
parser and then uses that parser to
parse the XML document. The SAX
parser starts at the beginning of the
document. When it encounters
something significant (in SAX terms, an
“event”) such as the start of an XML
tag, or the text inside of a tag, it makes
that data available to the calling
application.

• Create a content handler that defines
the methods to be notified by the parser
when it encounters an event. These
methods, known as callback methods,
take the appropriate action on the data
they receive.

Now let’s look at how you use JAXB to access
an XML document

 Oct-07 Java Jazz Up 47

The general steps to use the JAXB API are:

1. Bind the schema

Bind the schema for the XML document
requires two steps:

Generate classes. An XML schema is used as
input to the JAXB binding compiler to
generate JAXB classes based on that schema.

Compile classes. All of the generated source
files and the application code must be
compiled.

2 Unmarshal

XML documents written according to the
constraints in the source schema are
unmarshalled by the JAXB binding framework
i.e. the XML documents are unmarshalled into
the Java content objects. Unmarshalling is a
wider process, it includes the following steps
to follow:

Generate content tree. The unmarshalling
process generates a content tree of data
objects instantiated from the generated JAXB
classes; this content tree represents the
structure and content of the source XML
documents which are now directly available to
the developers program. Now developer can
access and process XML data without having
to know XML or XML processing.

Validate (optional) the unmarshalling
process optionally involves validation of the
source XML documents before generating the
content tree.

Process the content. The client application
can modify the XML data represented by the
Java content tree by means of interfaces
generated by the binding
compiler.

3. Marshal.

The processed content tree is marshalled out
to one or more XML output documents. The
content may be validated before marshalling.

Now its Time to Dig the Things Deeper

I. Bind the Schema

JAXB simplifies access to an XML document from
a Java program by presenting the XML
document to the program in a Java format. The
first step in this process requires to bind the
schema for the XML document into a set of
Java classes that represents the schema. Where
a schema is an XML specification that governs
the allowable components of an XML document
and the relationships between the components.

Binding: Binding a schema means generating
a set of Java classes that represents the
schema. All JAXB implementations provide a tool
called a binding compiler to bind a schema
(the way the binding compiler is invoked can be
implementation-specific). For example, the JAXB
Reference Implementation provides a binding
compiler that one can invoke through scripts
i.e. you may bind a schema with a binding
compiler provided by the JAXB Reference
Implementation

The binding compiler generates a set of
interfaces and a set of classes implementing
the interfaces.

Then this binding compiler compiles and
packages the generated interfaces and classes
into a package.

II. Unmarshal the Document

Unmarshalling an XML document means
creating a tree of content objects representing
the content and the organization of the
document. The content tree is not a DOM-
based tree. In fact, content trees produced
through JAXB are more efficient in terms of
memory use than DOM-based trees.

Java Architecture for XML Binding

48 Java Jazz Up Oct-07

The content objects created are instances of
the classes produced by the binding compiler.

Apart from a binding compiler, a JAXB

implementation must provide runtime APIs for
JAXB-related operations such as marshalling.
The APIs are provided as a part of the binding
framework. The binding framework comprises
of a main package, javax.xml.bind. This package
contains classes and interfaces for performing
operations such as unmarshalling, marshalling,
and validation (marshalling and validation will
be covered later).

Validating the Source Data: You can validate
source data against an associated schema as
part of the unmarshalling operation. JAXB
providers have a lot of flexibility here. The JAXB
specification mandates that all provider
implementations report validation errors when
the errors are encountered, but the
implementation does not have to stop
processing the data. It is possible for a JAXB
implementation to successfully unmarshal an
invalid XML document, and build a Java content
tree. However, the result won’t be valid. The
main requirement is that all JAXB
implementations must be able to unmarshal
valid documents.

Additionally, you also have the flexibility of
turning the validation switch off if you don’t
want to incur the additional validation
processing overhead.

III. Marshal the Content Tree:

Marshalling is the opposite of unmarshalling.
Marshalling involves transforming the content
tree into a XML document.

Features of JAXB 2.0

JAXB is one of the APIs included with the
Java EE platform and also a part of Java Web
Services Development Pack (JWSDP). In this

article we are discussing the features of
JAXB 2.0; However JAXB 2.1 is available for
downloading.

JAXB 2.0 includes some new features:

• It supports for all of the XML Schema
constructs.

• It includes parameterized types also.
• It allows us to bind Java-to-XML by

using the annotations.
• In this version setValidation () method

of the UnMarshaller interface has been
replaced with the JAXP 1.3 validation.

• The new version of JAXB (JAXB 2.0)
requires smaller runtime libraries that
require lesser runtime memory.

• JAXB 2.0 generates a value class
instead of an interface and its
implementation class. For each top-
level element, JAXB 2.0 generates a
Factory class method instead of an
interface and an implementation class.

• It generates significantly fewer Java
classes from a schema.

How JAXB 2.0 works

To understand how to process XML
documents in Java with JAXB 2.0, one need
to give a closer look at the two main JAXB
components:

I The binding compiler (which binds a

Java Architecture for XML Binding

 Oct-07 Java Jazz Up 49

given XML schema to a set of generated
Java classes).

II The binding runtime framework (which
provides unmarshalling, marshalling, and
validation functionalities).

Binding compiler:

This compiler binds the XML schema with
the generated set of java classes. The JAXB
binding compiler (or xjc) lets the developers
generate Java classes from a chosen XML
schema. The JAXB binding compiler transforms
an XML schema into a collection of Java classes
which matches the structure described in the
XML schema. These classes are annotated with
special JAXB annotations, which provide the
runtime framework with the mappings it needs
to process the corresponding XML documents.

Marshaller and unmarshaller together as a
technology lets the Java developers easily
manipulate XML data in the form of Java objects
— without any need to know the details of the
processing mechanisms of the parsers like SAX
or DOM.

Binding runtime framework:

This framework provides support for
marshalling, unmarshalling and the validation
functionalities. Marshalling is the mechanism of
placing data items before moving it over the
communication channel. To unmarshall an XML
document, you need to create an unmarshaller
from the context. The unmarshaller processes
the XML data from a wide variety of data
sources, including files, input streams, URLs,
DOM objects, SAX parsers, and more.

Marshalling involves transforming your Java
classes into XML format. In JAXB 2.0, it’s simple
to create and manipulate these Java classes.
One can treat XML as an ordinary class
(according to the corresponding XML schema).

Getting the things ready to go with JAXB
2.0:

1 Download the Java Web Services
Developer Pack 2.0. It includes an
implementation of JAXB 2.0.

2 Install JWSDP 2.0 at the location say
C:\Sun\jwsdp-2.0 (which is the default
installation directory). JAXB 2.0 will get
installed in the directory C:Sun\jwsdp-
2.0\jaxb.

3 Include the path of the bin directory
(i.e. C:\Sun\jwsdp-2.0\jaxb\bin) to the
PATH variable.

4 Since JAXB 2.0 the parameterized types
features of JDK5.0, so first install install
the JDK 5.0 and then set the
environment variables for the
JAVA_HOME, JAXB_HOME and JAVA.

The following table lists the jar files required
by JAXB 2.0.

JAR File Description
C:/Sun/jwsdp-2.0/jaxb/lib/jaxb-api.jar JAXB
2.0 API classes
C:/Sun/jwsdp-2.0/jaxb/lib/jaxb-impl.jarJAXB
2.0 implementation classes
C:/Sun/jwsdp-2.0/jaxb/lib/jaxb-xjc.jar JAXB
2.0 Compiler classes
C:/Sun/jwsdp-2.0/jwsdp-shared/lib/
activation.jar javax.activation package
classes.
C:/Sun/jwsdp-2.0/sjsxp/lib/jsr173_api.jar
StAX API classes
C:/Sun/jwsdp-2.0/sjsxp/lib/sjsxp.jar StAX
classes

JAXB prerequisites: To get started with
JAXB 2.0 we require

• Java Platform and Standard Edition 5:
JAXB 2.0 mainly based on the features
of Java SE 5, like generics and
annotations.

• Implementation of JAXB 2.0

We will implement JAXB 2.0 in the next issue.

Java Architecture for XML Binding

50 Java Jazz Up Oct-07

I. Adapter Pattern:

Structural Design Patterns This pattern
establishes a relationship between the two
unrelated interfaces such that they work
together. This is similar to the conversion of
one interface of one class to the interface
expected by the client. To understand clearly
lets take an example:

Suppose there are several sockets of different
sizes, and shapes in a house. Due to variation
in sizes, all the sockets are not capable of plug-
in a mobile charger. So we use an Adapter to
make it portable across different sockets. Here
Adapter works as a connector. This connector
connects them together and meets the purpose
of the client.

Benefits: It helps the developers to relate the
unrelated class such that they may work
together. It provides compatibility between the
classes and increases the transparency.
Additionally it provides a pluggable kit, delegates
objects, makes the classes highly reusable and
achieves the goal through inheritance or
composition.

It also tries to match the interfaces such as
WindowAdapter, KeyAdapter, MouseAdapter,
ContainerAdapter, ComponentAdapter,
FocusAdapter and MouseMotionAdapter.

Usage: The adapter pattern is meant to use
an existing class to fulfill the client’s class
requirements. For example, suppose a client
specifies his requirement in an interface, and
then to meet the purpose usually a class is
created that implements the required
interface and inherits the existing class into
the subclasses. This approach creates a class
known as the adapter class which translates
the client’s calls to the existing class
methods. Adapter pattern also helps to make
improvements in the new code and to make
the code more manageable. It improves the
performance while designing the system.

Now think all such things technically and try
to resolve the problem. There are two ways
of implementing the Adapter Pattern, either
use the Inheritance or use the composition.

Let’s do it with the approach of Inheritance
First develop a socket interface as:

Switch.java

public interface Switch {

public void switchOn();
public void switchOff();

}

Implement Switch.java in a class say Fan
class. The class is given below:

Fan. java

public class Fan implements Switch{

public void switchOn() {
System.out.println(“FAN Switched ON”);
}
public void switchOff() {
System.out.println(“FAN Switched OFF”);
}
public static void main(String arg[]){
Fan f = new Fan();
f.switchOn();
f.switchOff();
}
}

Here is the output of the above Fan.java
program:

C:\>javac Fan.java
C:\>java Fan
Fan Switched ON
Fan Switched OFF

Finally, there will be an adapter class. This will
inherit the Switch and give output for Fan.

Structural Design Patterns

 Oct-07 Java Jazz Up 51

Bulb.java:

public class Bulb implements Switch {
public void switchOn() {
System.out.println(“BULB Switched ON”);
}
public void switchOff() {
System.out.println(“BULB Switched OFF”);
}
}

Here is the output of the above Bulb.java
program:

C:\>javac Bulb.java
C:\>java Bulb
Bulb Switched ON
Bulb Switched OFF

Similarly, let’s consider the Association and
Composition of objects by which Adapter can
be implemented.

The above example shows how Adapter pattern
works. When one interface cannot be changed
and needed to suit again a cannot-be-changed
client, then an adapter is used so that both
the interfaces work together.

II. Bridge Pattern:

Builder pattern provides independence to the
interface from its implementation. It provides
flexibility to both to vary independently. Suppose
we have a database containing multiple
questions and we want to display the questions
on the basis of the user selections. Then such
type of problems can be solved with the Bridge
Design Pattern. It does that simply by
decoupling the relationship among the objects.

Benefits: It separates the abstraction from the
implementation details. Inheritance tightly
couples the abstraction with the
implementations at the compile time, However
the Bridge pattern hides the implementation
details, improves the extensibility, shares an
implementation among multiple objects. It
reduces the number of subclasses, sometimes
use of pure inheritance increases the number
of subclasses. It also improves the extensibility

by extending independency between the
abstraction and the implementation.

Usage: It is used in such situation if you do
not want the permanent binding between an
abstraction and its implementation. It
is frequently used in those places where
changes made in the implementation does not
effects the clients. It can be used to fulfill such
requirements where the abstractions and the
implementations needs to be extensible.

Now lets take an example:

First develop a Question.java interface:

Question.java:

interface Question {

public void nextQuestion();
public void priorQuestion();
public void newQuestion(String q);
public void deleteQuestion(String q);
public void displayQuestion();
public void displayAllQuestions();

}

Develop another class QuestionManager
implementing the Question.java interface:

class QuestionManager {

protected Question questDB;
public String catalog;

public QuestionManager(String catalog) {
this.catalog = catalog;
}

public void next() {
questDB.nextQuestion();
}

public void prior() {
questDB.priorQuestion();
}

public void newOne(String quest) {
questDB.newQuestion(quest);
}

Structural Design Patterns

52 Java Jazz Up Oct-07

public void delete(String quest) {
questDB.deleteQuestion(quest);
}

public void display() {
questDB.displayQuestion();
}

public void displayAll() {
System.out.println(“Question Catalog: ” + catalog);
questDB.displayAllQuestions();
}

}
Develop another class QuestionFormat
extending the QuestionManager class
QuestionFormat.java
class QuestionFormat extends QuestionManager {

public QuestionFormat(String catalog){
super(catalog);
}

public void displayAll() {

System.out.println(“\n~~~~~~~~~~~~~”);
super.displayAll();
System.out.println(“~~~~~~~~~~~~~~~”);
}
}

Develop another class JavaQuestions
implementing the “Question” interface:

JavaQuestions.java:

import java.util.*;
class JavaQuestions implements Question {

private List <String> questions =
new ArrayList<String>();

private int current = 0;

public JavaQuestions() {
questions.add(“What is Java? ”);
questions.add(“What is marker interface? ”);
questions.add(“What is cross-platform? ”);
questions.add(“How multiple polymorphism i
s achieved in java? ”);
questions.add(“How many types of exception
handling are there in java? ”);

questions.add(“Define the keyword final for variable,
method, and class in java? ”);
questions.add(“What is multi-tasking? ”);
questions.add(“What is multi-threading? ”);

}

public void nextQuestion() {
if(current <= questions.size() - 1)
current++;
}

public void priorQuestion() {
if(current > 0)
current—;
}

public void newQuestion(String quest) {
questions.add(quest);
}

public void deleteQuestion(String quest) {
questions.remove(quest);
}

public void displayQuestion() {
System.out.println(questions.get(current));
}

public void displayAllQuestions() {
for (String quest : questions) {
System.out.println(quest);
}
}

}

Develop another class TestBridge

TestBridge.java

class TestBridge {

public static void main(String[] args) {

QuestionFormat questions =
new QuestionFormat(“Java Language”);

questions.questDB = new JavaQuestions();

Structural Design Patterns

 Oct-07 Java Jazz Up 53

//
 questions.questDB = new CsharpQuestions();
//
 questions.questDB = new CplusplusQuestions();

questions.display();
questions.next();

questions.newOne(“What is polymorphism? ”);
questions.newOne(“How many types of
polymorphism are there in java?”);
questions.displayAll();
}
}

Here is the output of the above program:

C:\ Command Prompt
C:\> javac TestBridge.java
C:\> java TestBridge
What is Java?
~~~~~~~~~~~~~~~~~~~~~~~~
Question Catalog: Java Language
What is Java? 
What is marker interface? 
What is cross-platform? 
How multiple polymorphism is achieved in
java? 
How many types of exception handling are
there in java? 
Define the keyword final for variable, method,
and class in java? 
What is multi-tasking? 
What is multi-threading? 
What is polymorphism? 
How many types of polymorphism are there in
java?
~~~~~~~~~~~~~~~~~~~~~~~~

The above example tries to show how the
Bridge pattern decouples the interface from
its implementation. One can easily notice that
the class JavaQuestion can be launched
independently working as an independent
system.

III. Composite Pattern:

Individual objects as well as the composite
objects can be represented with the Composite
Design Pattern. Composite pattern represents

these objects with a tree structure. Suppose,
within a company, there is an employee
hierarchy where a manager has its
subordinates, Project Leader also has the
subordinates, while the developer has no
subordinates.

Benefits: It is more flexible as compared to
the static inheritance. It simplifies coding by
implementing each feature in a class. It
enhances the capability of an object as the new
classes are created to add new features and
make some changes.

Usage: This design pattern is used when the
responsibilities are needed to be added
dynamically to the individual objects without
affecting other objects. Where an object’s
responsibilities may vary from time to time.
Now, let’s try to solve the above problem
technically.

Develop a class “Employee” having the
getters and setters for the attributes
empname, empsal and emp subordinates.

Employee.java

class Employee {
String Empname;
double Empsalary;
Employee(String n, double s){
Empname = n;
Empsalary = s;
}
String getName() {
return Empname;
}
double getSalary() {
return Empsalary;
}
public String toString() {
return ”Employee” + Empname;
}
}

For example, General Manager may have
several employee and some of them are
Managers, further these managers have
several employees. To illustrate all these
things, let’s design a simple Manager class.

Structural Design Patterns

54 Java Jazz Up Oct-07

Manager.java:

class Manager {
Manager manager;
Employee[] emply;
String dept;
Manager(Manager mgr,Employee[] e, String d) {
this(e, d);
this.manager = mgr;
}

Manager(Employee[] e, String d) {
emply = e;
dept =d;
}
String getDept() {
return dept;
}
Manager getManager() {
return manager;
}
Employee[] getEmployee() {
return emply;
}
public String toString() {
return dept + ” manager”;
}
}

Here is the “Test” class that shows the
information about the “Manager” class.
Test.java:

class Test {
public static void main(String[] args) {
Employee[] e1 = {new Employee(“Zulfiqar”, 90),
new Employee(“Amit”, 80)};
Manager m1 = new Manager(e1, ”Accounting”);

Employee[] e2 = {new Employee(“Aquil”, 70),
new Employee(“Ravi”, 60),
new Employee(“Vinod”, 40)};

Manager m2 = new Manager(m1, e2, ”Production”);

System.out.println(m2);
Employee[] emp = m2.getEmployee();
if (emp != null)
for (int k = 0; k < emp.length; k++)
System.out.println
(“ ”+emp[k]+” Salary: $”+ emp[k].getSalary());
Manager m = m2.getManager();
System.out.println(“ ” + m);
if (m!= null) {
Employee[] emps = m.getEmployee();
if (emps != null)
for (int k = 0; k < emps.length; k++)
System.out.println
(“ ” + emps[k]+” Salary: $”+ emps[k].getSalary());

}}}

Here is the output of the program:

C:\> java Test
Production manager
Employee Zulfiqar Salary: $90.0
Employee Amit Salary: $90.0
Employee Aquil Salary: $80.0
Accounting manager
Employee Ravi Salary: $70.0
Employee Vinod Salary: $50.0

The above example concludes that the
composite pattern allows us to create a tree
like structure for both simple and complex
objects.

Structural Design Patterns

 Oct-07 Java Jazz Up 55

This section is very useful for any beginner
in the field of JSF (Java Server Faces) framework
of Java. This example covers all you need to
develop the application, for example, using JSF
tags, creating properties files and managed
beans, modifying configuration files like faces-
config.xml and web.xml, directory structure of
the application etc. Detailed explanation of this
example will definitely support you to develop
JSF applications with rich set of functionality of
JSF.

In this application, the first page that the user
experiences is displayed with an input text box
and a command button component. User enters
name in the box and presses the button then
user is welcomed in the next page.

Steps Followed:

We will follow the steps below to create this
application:

1 Create development directory structure
(root directory and sub directories)

2 Create and place configuration files in
appropriate place

3 Create JSP pages
4 Create a properties file
5 Create a managed bean
6 Register managed bean in configuration

file
7 Define a navigation rule in configuration

file
8 Run the application

To understand clearly where to place which file,
directory structure of this application will help
you a lot. So have a look on it below:

Directory structure of this application:

The pictorial directory structure given below is
very useful to understand the application. This
structure shows where to put which file or
directory.

Create and place directories,
configuration files:

We used JDK 1.6.0 and TOMCAT 5.5.23 to
deploy and run this application. So you are
expected to install and configure TOMCAT for
JSF.

Directories:
In tomcat, web applications are placed within
webapps folder. Now we are going to start
creating “JSFHelloApplication” application so the
first step is to create a folder in web apps with
the name “JSFHelloApplication”. This is the root
directory of the application. Now create WEB-
INF folder in root directory and place
configuration files web.xml and faces-config.xml
file.

Configuration files:

1. web.xml: You can get web.xml file from
WEB-INF folder of any other application available
in TOMCAT by default or you can create yourself
with the same name and extention of the file
i.e. “web.xml”. If you are creating this file then
take care of mentioning version of xml. For ex.
<?xml version=”1.0"?> at the top of file and
after that all elements will be written within

 Develop-JSF Application

56 Java Jazz Up Oct-07

<web-app> element. So the initial format of
this file will be like this:

<?xml version=”1.0"?>
 <web-app>

</web-app>

If you want to create this file then write above
code in notepad and save it with name
“web.xml” in the WEB-INF folder of your
application. After creating and placing this file
to the appropriate position, we have to add
child elements within web-app element. We
will write those elements will be described
later.

2. faces-config.xml: Now we come to the
second file “faces-config.xml” that will be in the
same place where web.xml is i.e. within WEB-
INF folder. Here also you have to take care of
mentioning version of xml as we did in web.xml
file. All sub elements will be written within
<faces-config> element. So initial format of this
file will be like this:

<?xml version=”1.0"?>
 <faces-config>

 </faces-config>

You can create this file also by your own or
copy from other JSF Application. If you want to
create this file then you can write the above
code in notepad and save it with the name
“faces-config.xml” in WEB-INF folder of your
application. After creating and placing this file
to the appropriate position, we have to add
some elements within faces-config element. How
we will write those elements will be described
later.

So now there will be two xml files web.xml and
faces-config.xml in WEB-INF directory.

This JSF application contains:

1 Three JSP pages for viewing purpose
2 JavaBean to hold model data
3 Configuration files specifying managed

bean, navigation rules, controller servlet.

Now our first step is to create view part of the
application. For this we have created three JSP
files given below:

 1. index.jsp
 2. inputname.jsp
 3. result.jsp

Creating JSP pages:

1-index.jsp:

The index page is stored in root directory
“JSFHelloApplication”. The code for “index.jsp”
is:

<html>
 <body>
 <jsp:forward page=”/pages/
inputname.jsf” />
 </body>
</html>

Description:

As you can see in code above, this page simply
forwards the user to the page “inputname.jsp”
through <jsp:forward page=”/pages/
inputname.jsf” /> line of code. Index page
doesn’t display anything to the user so you
can leave creating this page but it has one
benefit that you can start application simply
mentioning the application name and not
specifying any file name at the end of URL i.e.
we can simply write http://localhost:8080/
JSFHelloApplication in the URL and see output
of the application.

So the first page that appears to the user is
“inputname.jsp” not “index.jsp”. The code for
“inputname.jsp” is:

JSF Application

 Oct-07 Java Jazz Up 57

2-inputname.jsp:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f” %>
<f:loadBundle
basename=”javajazzup.messages”
var=”message”/>

<f:view>
<html>
 <head><title>enter your name page</
title></head>

 <body>
 <h:form>
 <h1><h:outputText
value=”#{message.inputname_header}”/></
h1>
 <h:outputText
value=”#{message.prompt}”/>
 <h:inputText
value=”#{StoreNameBean.personName}” />
 <h:commandButton
action=”result”
value=”#{message.button_text}” />
 </h:form>
 </body>
</html>
</f:view>

Description:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f” %>

“taglib” directive is used to include JSF tag
libraries. First line tells where to find JSF html
tags that defines html elements and second
line tells where to find JSF core tags. A page
that contains JSF tags is represented by a
tree of components. The root of this tree is
UIViewRoot. This root is represented by view
tag. So it is necessary to include all
component tags (tags representing UI
components) within view tag.

<f:loadBundle basename=”
javajazzup.messages” var=”message”/>

This line loads our properties file (resource
bundle) that holds messages to be displayed
in the JSP page. Actually this file is a collection
of “param=value” pair. The name of this file is
“messages.properties” in this application which
is saved in /WEB-INF/classes/ javajazzup folder.
We will explain more about this in subsequent
section.

<h:form> tag is used to create html <form>
using JSF tag. Typically JSP page includes a
form, which is submitted when a button is
clicked. Form components must be used within
<h:form> and </h:form>.

<h:outputText
value=”#{message.inputname_header}”/>

This tag displays text on the page defined in
the value attribute by looking into the resource
bundle i.e. properties file (messages.properties)
. It looks the value for inputname_header
parameter in “message.properties” file and set
the value of it to value attribute. Finally this tag
prints this value. So in this example this line
prints “Java Jazz Up”.

<h:outputText value=”#{message.prompt}”/
>

In this line the value of “prompt” param is looked
in “messages.properties” file and this tag prints
this value. So in this example this line prints
“Enter Your Name:”

<h:inputText
value=”#{StoreNameBean.personName}” />

inputText tag is used to create input text box
component. The value attribute is connected
with the managed bean attribute. Here
StoreNameBean is the name of Bean and
personName is the name of attribute of bean.
After pressing the submit button, bean gets
the value filled in the input text box. This bean
is nothing but a Java Bean that contains
attributes and setter and getter methods to

JSF Application

58 Java Jazz Up Oct-07

set and get those attributes. We will explain
more about Managed Bean later in this section.

<h:commandButton action=”result”
value=”#{message.button_text}” />

commandButton tag represents command
button component. Here again the value
attribute gets value of button_text param from
“messages.properties” file. So in this example
this line prints “Submit” on button component
.The action attribute is used to see which page
will be displayed next when we will press this
button. This “result” value is matched in faces-
config.xml file in WEB-INF folder where
navigation rules are defined. How to define
navigation rules in faces-config.xml file will be
described later in this section. Here in this
application the next page is “result.jsp” when
submit button is pressed.

The collective output of tags used in
inputname.jsp will give rise to the first page
appeared in front of the user: Output of the
page is given below:

When above page appears to the user, user
enters name to the input text field and submits
the button, a new page “result.jsp” is
generated that welcomes the user with the user
name. The code for “result.jsp” is:

3-result.jsp:

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f” %>
<f:loadBundle
basename=”javajazzup.messages”
var=”message”/>

<html>
 <head><title>greeting page</title></
head>

 <body>
 <f:view>
 <h3><h:outputText
value=”Hi,#{StoreNameBean.personName}!”
/>

<h:outputText
value=”#{message.greeting_text}” /></h3>
 </f:view>
 </body>
</html>

Description:

First three lines are same as in
“inputname.jsp” file.

<h:outputText value=”Hi,
#{StoreNameBean.personName}!” />

The above line is used to access the value of
personName attribute from Java Bean named
“StoreNameBean” and prints this value (i.e.
person’s name) on the page.

<h:outputText
value=”#{message.greeting_text}” />

This line looks the value of greeting_text in
“message.prorerties” file and prints this value
to the page. Here this line prints “Welcome In
Java Jazz Up”.

Output of result.jsp:

So output will be like this (if “rose” is entered
in the text field of “inputname.jsp” page):

JSF Application

 Oct-07 Java Jazz Up 59

Now we come to those topics that have been
left unexplained above.

Creating properties file (resource
bundle):

In above JSP files we have used
“message.properties” file. A properties file is a
collection of “param=value” pairs. We can use
there param names in our JSP file and get its
value from here as we did previously. The
benefit of using properties file is that we can
modify these values easily in one place and there
is no need to change JSP files. In this application
we have created “messages.properties” file in
javajazzup folder in WEB-INF/classes folder. The
code for this file is:

messages.properties:

inputname_header=Java Jazz Up
prompt=Enter Your Name:
greeting_text=Welcome In Java Jazz Up
button_text=Submit

Creating Managed Bean:

In the above JSP files we have used Managed
Bean named “StoreNameBean”. For this we have
created “PersonBean.java” file. This Managed
Bean is nothing but a Java file that contains
attributes and setter and getter methods to
set and get those attributes. Here in this
example, there is only one attribute named
“personName” and so only one setter method
setPersonName() and one getter method
getPersonName() is created. This bean is used
to set the value to the bean attribute from the
page and get the value from bean to the page.
Make sure the attribute in this class must be
same as the field name in JSP. In this example
this file is created in package javajazzup. So
compile this file and place its class file i.e.
PersonBean.class in javajazzup folder in WEB-
INF\classes folder. The code for this class is:

PersonBean.java:
package javajazzup;

public class PersonBean {
 String personName;
 public String getPersonName() {

 return personName;
 }

 public void setPersonName(String name) {
 personName = name;
 }
}

If you want to access the bean classes in
your JSP files, you have to register the bean
classes in faces-config.xml.

Registering managed bean:

We have already created faces-config.xml file
with empty <faces-config> element. This
configuration file is used to register managed
beans, specifying navigation rules etc. We will
add <managed-bean> element within <faces-
config> and </faces-config> tag to register
Managed Bean.

<managed-bean>
<managed-bean-name>StoreNameBean</
managed-bean-name>
<managed-bean-class>
javajazzup.PersonBean</managed-bean-
class>
<managed-bean-scope>request</managed-
bean-scope>
</managed-bean>

Bean’name is given in <managed-bean-
name>tag. This name is used in JSP files to
represent the bean. The class name that
corresponds to this bean is given in <managed-
bean-class> tag. <managed-bean-scope>
defines the scope for the bean. In this
Application, name of the bean that will be used
in JSP files is “StoreNameBean”.

Defining navigation rule:

Now we will understand how navigation from
one page to the next page is performed as in
our application inputname.jsp page navigates
to result.jsp page when user presses submit
button after filling text in input text field. To
understand this we come back to the line of
code used in “inputname.jsp”:

JSF Application

60 Java Jazz Up Oct-07

<h:commandButton action=”result”
value=”#{message.button_text}” />

Here action attribute is set to “result”. When
user presses the command button then which
page will be displayed is determined by the
navigation rule defined in faces-config.xml
configuration file. This rule has been defined
like this for our application:

<navigation-rule>
 <from-view-id>/pages/inputname.jsp</
from-view-id>
 <navigation-case>
 <from-outcome>result</from-
outcome>
 <to-view-id>result.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

<navigation-rule> defines navigation rule.
<from-view-id> is used to specify the jsp file
for which navigation rule is to be defined. Here
in our application it is inputname.jsp that is in
pages folder. <navigation-case> specifies the
value which is matched with the value specified
in action attribute of commandButton tag. If it
matches then the page specified within <to-
view-id> tag is displayed. Here in our application
it is “result.jsp”.

So after editing faces-config.xml file, it will look
like following:

<?xml version=”1.0"?>
<!DOCTYPE faces-config PUBLIC
“-//Sun Microsystems, Inc.//DTD JavaServer
Faces Config 1.1//EN”
“http://java.sun.com/dtd/web-
facesconfig_1_1.dtd”>

<faces-config>
 <managed-bean>
 <managed-bean-
name>StoreNameBean</managed-bean-
name>
 <managed-bean-class>
javajazzup.PersonBean</managed-bean-
class>
 <managed-bean-scope>request</

managed-bean-scope>
 </managed-bean>
 <navigation-rule>
 <from-view-id>/pages/
inputname.jsp</from-view-id>
 <navigation-case>
 <from-outcome>result</from-
outcome>
 <to-view-id>result.jsp</to-view-
id>
 </navigation-case>
 </navigation-rule>
</faces-config>

Editing web.xml:

The “FacesServlet” servlet handles JSF
applications. So as we are using JSF
framework in our web application, we will edit
the deployment descriptor file web.xml to
define “FaceServlet” and its mapping in
web.xml file.

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-
class>javax.faces.webapp.FacesServlet</
servlet-class>
<load-on-startup> 1 </load-on-startup>
</servlet>

<!— Faces Servlet Mapping —>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>
</servlet-mapping>

<servlet> element maps the
“javax.faces.webapp.FacesServlet” servlet
class to a symbolic name i.e. Faces Servlet is
an alias for “javax.faces.webapp.FacesServlet”
servlet .<servlet-mapping> element is used
to map any request of pattern like .jsf in the
URL must be passed to the Faces servlet.

The FacesServlet servlet works as an engine
for all JSF applications(handling of all JSF related
requests, building component tree of the JSP
page, accessing all JSP pages in the application,
creating an Event object and passing it to any
registered listener). So all requests that need

JSF Application

 Oct-07 Java Jazz Up 61

FacesServlet processing must be directed to this
servlet. So if we want to invoke this servlet
with every request we have to do mapping in
<servlet-mapping> element. This is done to map
a particular URL pattern with the Faces servlet.
URL of every request must contain <file
name>.jsf pattern because we have mentioned
this pattern in <url-pattern> tag.

If we look in “index.jsp” file, we will find that
there is .jsf file suffix not .jsp in the path for
the forward.

<jsp:forward page=”/pages/inputname.jsf” /
>

This is because we have used *.jsf in the URL
pattern in the web.xml file for the application.
This is used to signal that the forwarded page
should be handled by the FacesServlet servlet
within Tomcat.

Running the application:

This application is now complete. To run this
application start Tomcat server and type
“http://localhost:8080/JSFHelloApplication”
URL in the address bar of your browser and
hit enter.

JSF Application

62 Java Jazz Up Oct-07

The term RIA (Rich Internet Applications) refers
to web applications that have the features and
functionality of traditional desktop applications,
it means Rich Internet Applications are a cross
between web applications and traditional
desktop applications that shift some of the
essential processing among the bulk of the data
for the user interface to the Web client while
rest of some remain on application server.

In the Rich Internet Application, the term ‘Rich’
stands for the broad range of media includes
multiple fonts, vector and bitmap graphic files,
animations, online conferencing, audio and
video. It sooths to the eyes and the materials
are more catchy due to its richness medium.
e.g. any picture in the flash is more attractive
than ordinary still picture.

Usually a Rich Internet Application runs in a
Web browser. It does not need the installed
software. It runs locally in a sandbox that
provides a secure environment.

Origin of RIAs

Before transforming in its in original name RIA
had been exist in several names and forms.
For example: Remote Scripting, X Internet, Rich
Web clients and Rich Web Application.

Microsoft exposed the initial name of Remote
Scripting in 1998, while Forrester Research
recalled it with ‘X Internet’ in October 2000.
Later it is also known as Rich Web client and
Rich Web Application.

The term ‘Rich Internet Application’ was first
introduced in March 2002 in a Macromedia white
paper.

Rich Internet Application Vs.
Standard Web Applications

Traditional web applications processed all activity
around client-server architecture and a thin
client. All the processing held on the server,
while client only displays static content in case
of being HTML content. Passing all the interaction
through the server that is required to reload
the data is the biggest drawback of this system
because all interactions with the application

Rich Internet Application

 Oct-07 Java Jazz Up 63

have to pass through the server that is
unnecessary and lowers the processing speed.
On the other hand, RIAs can dodge this slow
and synchronous loop for many user
interactions. This difference is rather similar to
the difference between “terminal and mainframe”

and Client-server/Fat client approaches.

As the development of Internet standards have
held gradually but continuously according to
turning time, it is very difficult to draw a strict
line between the composition materials of an
RIA.

But one characteristic is similar in all RIAs as
they introduce an intermediary layer of code
between the user and the server that is often
known as a client engine. It acts as an extension
of the browser and generally downloaded at
the beginning of the application that can be
supplemented by further code downloads as
the application progresses. The client engine
usually takes over responsibility for rendering
the application’s user interface and for server
communication. In most RIAs the client engine
performs additional asynchronous
communications with servers.

Benefits

There are several benefits of RIAs over
Traditional Web Application; these are:

• RIAs are usually richer in functionality
as they offer user-interface behaviors
using only the HTML widgets that can
include any technology being used by
the client side, including drag and drop,
using a slider to change data, calculations
performed only by the client and not
need to be sent back to the server.

• The interface behaviors of RIAs are
usually much more responsive in the
comparison of interface behaviors of a
standard Web browser while it can also
generate other performance benefits
when it uses a client engines. These are:

1 It is able to make better balance
between Client and Server that frees
server resources allowing the same server
hardware to handle more client sessions
concurrently.

2. It is also be able to make asynchronous
communication without waiting for the
user to perform an interface action like
clicking on a button or link. So the RIA
designers feel free to move data between
the client and the server without making
the user wait. Besides this prefetching is
the most common application, in which
an application anticipate a future need for
certain data, and downloads it to the
client before the user requests it, because
of running at high speed and getting up
a consequent response. Google Maps
uses this technology with efficiently and
on the massive scale to move adjacent
map segments to the client before the
user scrolls their view.

There is another benefit of RIA in terms of
network efficiency as the huge traffic
significantly reduces in Rich Internet
Applications because an application-specific
client engine is more intelligent than a standard
Web browser when deciding what data needs
to be exchanged with servers. This boosts the
individual requests or responses due to less
data transferring in each interaction. Thus the
overall network load becomes reduced.

Rich Internet Application

64 Java Jazz Up Oct-07

Meanwhile, use of asynchronous prefetching
techniques can either neutralize or can reverse
this potential benefit, as many times the code
cannot anticipate exactly what every user will
do next, it is common for such techniques to
download extra data, not all of which is actually
needed, to many or all clients.

Shortcomings and restrictions

Despite of having flair advantage over the
standard web application, RIAs have several
shortcomings and restrictions too. These are:

1- Sandbox

As RIAs run within a sandbox, so the correct
operation of sandbox is necessary to run RIA
successfully. If assumptions about access to
resources are incorrect, RIAs may fail to
operate correctly that restricts access to system
resources.

2- Disabled scripting

For running RIAs, any scripting language
includes JavaScript is usually essential. In case
of disabled active scripting in the browser, there
is no functioning in RIA.

3- Client processing speed

Some Rich Internet Applications uses client-side
scripts written in interpreted language that
moderate the performance speed, while
compiled client language in traditional application
have no relation with speed.

4- Script download time

If user downloads any document, it has to be
transferred at least once from the website to
the system’s cache memory. Though the
downloaded document does not need to be
installed on the system, yet it sometimes takes
unexpected long time. RIA developers can
reduce the delay time by compressing the
scripts, and by staging their delivery over
multiple pages of an application.

5- Loss of visibility to search engines

Search engines may not be able to index the
text content of the application.

6- Dependence on an Internet
connection

Like traditional Web Application, RIA also needs
internet connectivity; the speed of RIA operation
also depends upon the network connection. An
ideal network connection is usually suitable for
running RIA smoothly, otherwise it may cause
of headache.

7- Management complications

Traditional Web applications are simpler because
of having only standard HTML built-in format
while the initiation of RIA technologies had make
it more complex and difficult to handle. The

Rich Internet Application

 Oct-07 Java Jazz Up 65

additional complexity of RIA makes them harder
to design, test, measure, and support. These
complications elongate the software
development process, despite of the particular
methodology or process being employed. Due
to its sluggish processing, it becomes difficult
to test the applications and incomplete testing
lowers the application’s quality and its reliability
while using.

RIA architecture provides a new
Web page paradigm

Traditional Web applications displays in a
series of Web pages that needs a distinct
download for each page, this is called web page
paradigm. On the other hand RIA takes no
longer time in downloading the page because
the client engine may be prefetching some of
the downloaded content for future use. New
measurement techniques have been formulated
RIA that reflects user’s experience initiated by
an HTTP GET request to permit reporting of
response time. RIA developers must instrument
their application code to produce the
measurement data needed for SLM.

The current status of RIA
development and adoption

At present RIAs are still in the early stages of
development and user adoption that still have
a number of restrictions and requirements
remaining in it. These are:

• Browser approval: Many RIAs need
modern web browsers for running that
include Advanced JavaScript engines
that uses the techniques like XML HTTP
Request for client-server communication
and DOM Scripting and advanced CSS
techniques to enable the rich user
interface.

• Web standards: Different versions
create difficulties in writing RIA that cannot
run in all platforms. After evaluation of
Java 1.1, it becomes simpler to write in
Java applets that run on all platforms.

• Development tools: To build RIA, some

essential products require including some
Ajax Frameworks and products like Curl,
Adobe Flex and Microsoft Silverlight to
provide an integrated environment.

• Accessibility apprehension: Additional
interactivity needs technical approaches
that limit applications’ accessibility.

• User’s acceptance: Users expecting
standard web applications may find that
some unexpected browser functionality
e.g. “Back” button.

Methods and techniques

JavaScript

It is the first major client side language
technology that has the ability to run code and
installed on several major of web clients. Earlier
its uses were relatively limited but the
development in DHTML makes possible to piece
together an RIA system without using unified
client-side solution. Ajax, the advance tool of
Java Script becomes more prominent technique
to develop RIA. Google is using this tool on
the mass scale to develop its one of the most
popular software Gmail and Google maps.
Despite of this it is not so easy to create a
large application in this framework. Several
other different technologies have to include with
efficiency. For making process easier several
open source Ajax Frameworks have been
developed along with commercial frameworks.

Rich Internet Application

66 Java Jazz Up Oct-07

Adobe Flash

This is another major tool to develop RIA as
this technology is cross-platform and quite
powerful to create an application user interface.
Flash user interface can be compiled by MXML
(a XML based interface description language),
through using Adobe Flex tool. Adobe is
currently working on providing a more powerful
platform with the product Adobe AIR, a combo
technology of HTMLs (including Ajax
applications) Flash player based applications and
PDFs.

OpenLaszlo

OpenLaszlo is an open source rich Internet
application framework, which was developed by
Laszlo Systems Inc.. The OpenLaszlo server

compiles programs from LZX language (a
mixture of XML tags and JavaScript) into either
DHTML (commonly known as AJAX now) or
Adobe Flash bytecode. At present it is
supporting Flash7 and Flash8. OpenLaszlo is
the only rich Internet application platform, which
can compile two different runtimes of same code
base.

Windows Presentation Foundation
and Silverlight

Microsoft has launched Windows Presentation
Foundation (WPF) with .NET 3.0 Framework that
provides a way to build single-platform

Rich Internet Application

applications having some similarities to RIAs
that uses XAML and programming languages
like C# and Visual Basic. Besides this, Microsoft
has announced to launch Silverlight that will
provide a subset of WPF functionality on
devices and other platforms.

ActiveX Controls

Inclusion of ActiveX controls into HTML is a
very powerful mean to develop rich Internet
applications, but they have no guarantee of
running it on Internet Explorer properly. Many
times they can break the sandbox model. This

makes it a suitable tool to target to
manufacture computer viruses and malware.

Curl 5.0, Rebol 2.6 and Seaside for
Smalltalk

There are three alternatives of Java and the
JVM are available in the RIA developing world.
These are: Curl, Rebol and Smalltalk. All these
are abstract machines that are available in
various forms. Curl facilitates Client-side
persistent data while Rebol does not need a
browser and Seaside uses a minor extension
to Smalltalk to provide a much richer web
experience for Smalltalk. All three alternatives
are far more mature than more familiar options
and are as old or older than Java and the JVM.

 Oct-07 Java Jazz Up 67

Rich Internet Application

Java applications

Java based Rich Internet Applications can be
launched from within the browser or as free
Standing applications through Java Web Start.
Java RIAs can perform full-fledged functionality
of Java include 2D & 3D graphics, and off-line
capabilities, but at the cost of delayed startup.
Some useful frameworks for Java RIAs are XUI,
Swixml, or Canoo’s thin Swing-approach,
UltraLightClient.

User Interface languages

New user interface markup language can be
used in RIAs as an alternative to HTML/XHTML.
RIA’s user interfaces may also be richer via using
scriptable Scalable Vector Graphics (SVL) as well
as SMIL Synchronized Multimedia Integration
Language (SMIL). Though all browsers do not
support native SVG rendering yet.

68 Java Jazz Up Oct-07

1- Create your own Notepad in Java

You must have worked with Notepad to write
programs. Now its turn to create notepad by
own with the help of java language. This section
explains some basic functionalities of notepad
which will help creating full fleshed notepad
application. So just go through the example
and see how it works.

First, a class extending JFrame and implementing
ActionListener is created. JFrame is the main
container for swing-based application. This
program sets look and feel of the working
platform by the statement

UIManager.setLookAndFeel
(UIManager.getSystemLookAndFeelClassName());
When we add components to a JFrame we don’t
directly add them to the JFrame but we have to
specify the pane of the JFrame’s JRootPane In
this example components are added to the
contentPane which can be got by calling
getContentPane(). The default behavior, when
the user attempts to close the window, is to
simply hide the JFrame. To change the default
behavior, invoke setDefaultCloseOperation
(JFrame.DISPOSE_ON_CLOSE) method which
Disposes the frame automatically when it closes.
Within the class, a menu bar, a menu and some
of its menu items are created and added to the
appropriate component. Action listeners are
added to the menu items to listen the action
when they are clicked and appropriate functions
are implemented that functions according to the
item clicked. For example, when user clicks on
open menu item then listener listens the action
and open() method is called that results in
displaying the content of the file.

Notepad.class:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.datatransfer.*;
import java.io.*;
import javax.swing.text.*;

public class Notepad extends JFrame
implements ActionListener {

JMenuBar menuBar;
JMenu menu;
JMenuItem open,copy,cut,paste,save,quit;
JTextArea field;
FileFilterClass javaFileFilter = new

 FileFilterClass ();
File file = new File (“file.java”);
public Notepad1(String title){

super(title);
try {

//Set Look and Feel of the current
plateform.
UIManager.setLookAndFee
l(UIManager.getSystemLookAndFeelClassName());

}
catch (Exception ex) {
System.err.println(“Error loading System
specific Look and Feel. “ + ex);

}
Container contentpane = getContentPane

();
contentpane.setLayout (new

BorderLayout ());
 this.setSize(300, 300);

// Dispose the frame automatically when it
closes.
this.setDefaultCloseOperation
(JFrame.DISPOSE_ON_CLOSE);

field = new JTextArea();
field.setDragEnabled(true);
contentpane.add (field, “Center”);
//Create Menu Bar.
menuBar = new JMenuBar();
setJMenuBar(menuBar);
//Create File menu.
menu = new JMenu(“File”);
//Activate the keyboard shortcut for File

menu.
menu.setMnemonic(KeyEvent.VK_F);//It

underlines the character ‘F’ passed into the
setMnemonic() method.

//Create menu items.
open = new JMenuItem(“Open”);
copy = new JMenuItem(“Copy”);
cut = new JMenuItem(“Cut”);
paste = new JMenuItem(“Paste”);
save = new JMenuItem(“Save”);
quit = new JMenuItem(“Quit”);
//Add items to the menu.
menu.add(open);
menu.add(copy);

Tips & Tricks

 Oct-07 Java Jazz Up 69

menu.add(cut);
menu.add(paste);
menu.add(save);
menu.add(quit);
menuBar.add(menu);
//Add listeners to the items.
open.addActionListener(this);
copy.addActionListener(this);
cut.addActionListener(this);
paste.addActionListener(this);
save.addActionListener(this);
quit.addActionListener(this);

}

public static void main(String[] args){
new Notepad(“Notepad”).setVisible(true);

}

public void actionPerformed(ActionEvent ae)
{

String cmd =
(String)ae.getActionCommand();

if (cmd.equals(“Open”)) open();
else if (cmd.equals(“Copy”)) copy();
else if (cmd.equals(“Cut”)) cut();
else if (cmd.equals(“Paste”)) paste();
else if (cmd.equals(“Save”)) save();
else if (cmd.equals(“Quit”)) quit();

}

public void open() {
JFileChooser fileChooser = new

JFileChooser();
fileChooser.setFileFilter

(javaFileFilter);
int returnVal =

fileChooser.showOpenDialog(this);
if(returnVal ==

JFileChooser.APPROVE_OPTION){
file = fileChooser.getSelectedFile();
String fileContent = readFile(file);
field.setText(fileContent);

}
}
public String readFile (File file) {

StringBuffer strBuffer;
String fileContent=null;
String lineString;
try {

FileReader fr = new FileReader(file);
BufferedReader br = new

BufferedReader(fr);
strBuffer = new StringBuffer() ;
while ((lineString = br.readLine ()) != null) {

strBuffer.append (lineString + “\n”);
}
fr.close();
fileContent = strBuffer.toString();
String name = file.getName();
if(name != null) {

int extensionIndex = name.lastIndexOf(‘.’);

setTitle(name.substring(0,extensionIndex));
}

}
catch (IOException e) {

return null;
}
return fileContent;

}

public void copy() {
String s = field.getSelectedText();
int start=field.getSelectionStart();
int end=field.getSelectionEnd();
StringSelection ss = new

StringSelection(s);
 // Set the content to the clipboard.
this.getToolkit().getSystemClipboard().
setContents(ss, ss);

}

public void cut() {
String s = field.getSelectedText();
int start=field.getSelectionStart();
int end=field.getSelectionEnd();
field.replaceRange(“”,start,end);
StringSelection ss = new

StringSelection(s);
 // Set the content to the clipboard.

this.getToolkit().getSystemClipboard().setContents(ss,
ss);

}

public void paste() {
Clipboard cb =

this.getToolkit().getSystemClipboard();
Transferable tr = cb.getContents(this);
try {

// Get the content from the clipboard.
String s = (String)

Tips & Tricks

70 Java Jazz Up Oct-07

tr.getTransferData(DataFlavor.stringFlavor);
int start=field.getSelectionStart();
int end=field.getSelectionEnd();
field.replaceRange(s,start,end);

}
catch (Exception e) {
return;

}
}

public boolean save() {
JFileChooser fileChooser = new
JFileChooser();
fileChooser.setFileFilter (javaFileFilter);
int returnVal =
fileChooser.showSaveDialog(this);
if(returnVal ==
JFileChooser.APPROVE_OPTION){
file = fileChooser.getSelectedFile ();
if (file.exists()) {
int response =
JOptionPane.showConfirmDialog (null,”File
already exists. Do you want to
continue?”,”Overwrite
Confirmation”,JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE);

if (response ==
JOptionPane.CANCEL_OPTION) return false;

}
String fileName = file.getName();
if(fileName != null) {

int extensionIndex =
fileName.lastIndexOf(‘.’);

setTitle(fileName.substring(0,extensionIndex));
}
return writeFile (file, field.getText());

}
return false;

}
public static boolean writeFile (File file, String

content) {
try {

PrintWriter pw = new PrintWriter (new
BufferedWriter (new FileWriter (file)));

pw.print (content);
pw.flush ();
pw.close ();

}
catch (IOException e) {

return false;
}

return true;
}

public void quit() {
System.exit(0);

}
}

The result of the above class can be

seen below:

Clicking the open menu item results in
opening the selected file and file name appears
at the top showing the current file opened.

Tips & Tricks

 Oct-07 Java Jazz Up 71

FileFilterClass

This class is responsible to filter files. When
file chooser opens a dialog box to open or save
the file, file filter gives an option to choose only
filtered files. In this example, FileFilterClass
class has been created to filter java files.

import java.io.*;
import javax.swing.filechooser.FileFilter;

//Class responsible to filter java files.
public class FileFilterClass extends FileFilter {

public boolean accept (File file) {
return file.getName ().toLowerCase

().endsWith (“.java”)|| file.isDirectory ();
}
public String getDescription () {

return “Only Java Files (*.java)”;
}

}

The result of creating this class can be seen in
the figure below. When you click open menu,
an open dialog is opened like below:

Now you can check rest of the functionalities
like copy, cut, paste, save and quit work properly
and also add more new functions to make it
more modern.

2- Create PDF file with Java Program

Sometimes, you may need creating a PDF
(Portable Document Format). iText is a java
library that contains classes to generate
documents in PDF, XML, HTML, and RTF. For
this you need to place iText.jar file to lib folder
of your JDK and set classpath for it. You can
download this jar file from the link http://
www.lowagie.com/iText/download.html The
program below will create PDF for you. Just
have a glance over the program below:

import java.io.*;
import com.lowagie.text.*;
import com.lowagie.text.pdf.*;
import com.lowagie.text.Font;
import com.lowagie.text.FontFactory;

public class JavaPDF{
public static void main(String arg[])throws

Exception{
//Create a document-object
Document document=new Document();

String p2 = “JavaJazzUp is a new wing of
Roseindia.net that is initiated to provide the
full-fledged and in-depth information to a wide
range of Java lovers. A magazine has a
characteristics of having a vast segments
related to a wide range of public choice and
must contain at least a portion of every
categories choice. So RoseIndia.net has decided

Tips & Tricks

72 Java Jazz Up Oct-07

to provide a wide range of Java news,
information and invention with latest update
and technology to Java lovers. This is a small
effort of Rose India organization to provide the
latest happening in the Java to its online users
every month.”;

String p4 = “JavaJazzUp Magazine is
committed to inform and educate Java
Professionals and software engineers. Each
issue of JavaJazzUp contains news, trends, and
latest updates in the Java world. Featured topics
include networking, security, policy and
advocacy, Java in telecom, mobile and computer,
wireless, eLearning, technology funding,
professional development, technology
support—all the important issues for
administration and tutorials. JavaJazzUp is a
monthly online Java Magazine that also contains
technology reviews, new researches and latest
Java Services. JavaJazzUp online magazine
provides a wide range of coverage as well as
in-depth information regarding technology and
its usage.”;

try {
Chapter chapter1,chapter2;
Paragraph

 paragraph1,paragraph2,paragraph3,
 paragraph4,paragraph5;

Chunk chunk;
Font font;
Image image;

// Create a PDF document writer.
PdfWriter.getInstance(document,new

FileOutputStream(“MyPDF.pdf”));
//Open the document

document.open();
paragraph1 = new Paragraph();
font = new Font(Font.COURIER,

Font.DEFAULTSIZE, Font.BOLD);
// Set the font for the chunk.

chunk = new Chunk(“About JavaJazzUp
Magazine”, font);
// Set underline for the content of
chunk.

chunk.setUnderline (0.2f, -2f);
paragraph1.add(chunk);
paragraph2=new Paragraph(p2);

// Set the alignment for the content of
the paragraph.

paragraph2.setAlignment
(Element.ALIGN_JUSTIFIED);

paragraph3=new Paragraph();
image = Image.getInstance

(“coversept.gif”);
// Set alignment for the image to be

pasted.
image.setAlignment(Image.MIDDLE);
// Set the size of the image.
image.scalePercent(75);
// Add image to the paragraph.
paragraph3.add(image);
paragraph4=new Paragraph(p4);
paragraph4.setAlignment

(Element.ALIGN_JUSTIFIED);
// Create chapters/pages of the pdf

file.
chapter1=new Chapter(paragraph1,1);
chapter2=new Chapter(paragraph4,2);
// Hide page number from chapters.
chapter1.setNumberDepth(0);
chapter2.setNumberDepth(0);
chapter1.add(paragraph2);
chapter1.add(paragraph3);
document.add(chapter1);
document.add(chapter2);

}
catch(DocumentException de) {

System.err.println(de.getMessage());
}
catch(IOException ioe) {

System.err.println(ioe.getMessage());
}
//Close the document
document.close();

}
}

The above program creates “MyPDF.pdf” file
as in the figure below:

Tips & Tricks

 Oct-07 Java Jazz Up 73

3- Count number of active users
through servlet

A session is just like a temporary unique
connection between the client (browser) and
server which helps the server to keep track of
the specific user. Session creation and
destruction events can help to count the number
of active session. We can create listener object
that will be called every time a session is created
or destroyed by the server.

In this section, SessionCounter is a listener
class which will be registered in the web.xml
file. Create SessionCounter class and implement
HttpSessionListener interface. Implement its two
methods sessionCreated() and
sessionDestroyed() passing HttpSessionEvent
as an argument. In the first method
sessionCreated(), increase the value of the
variable responsible for counting the number
of active sessions because one new session has
been created and in the second method
sessionDestroyed () decrease the value of the
same by one because one session has been
ended. Save this file to the WEB-INF/classes
folder of Tomcat server.

SessionCounter.java

import
javax.servlet.http.HttpSessionListener;
import javax.servlet.http.HttpSessionEvent;

public class SessionCounter implements
HttpSessionListener {

private static int activeSessions = 0;
private static int destroyedSessions = 0;
private static String aSID = null;
private static String iaSID = null;

public void sessionCreated(HttpSessionEvent
se) {

aSID = se.getSession().getId();
activeSessions++;

}

public void
sessionDestroyed(HttpSessionEvent se) {

iaSID = se.getSession().getId();

Tips & Tricks

74 Java Jazz Up Oct-07

if(activeSessions > 0){
activeSessions—;
destroyedSessions++;

}
}

public static int getActiveSessions() {
return activeSessions;

}
public static int getInactiveSessions() {

return destroyedSessions;
}
public static String getActiveSessionID() {

return aSID;
}
public static String getInactiveSessionID() {

return iaSID;
}

}

Now create a servlet that will use above listener’s
variables to show the current status of session.

ServletSessionCounter.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class ServletSessionCounter extends
HttpServlet{

public void doGet(HttpServletRequest
request, HttpServletResponse response)
throws ServletException, IOException{

response.setContentType(“text/html”);
PrintWriter pw = response.getWriter();
HttpSession session=

request.getSession();
pw.println(“No. of active sessions :” +

SessionCounter.getActiveSessions()+”
”);
pw.println(“No. of inactive sessions :” +

SessionCounter.getInactiveSessions()+”
”);
pw.println(“Last Activated Session ID :”

+
SessionCounter.getActiveSessionID()+”
”);

pw.println(“Last Inactivated Session ID :”
+
SessionCounter.getInactiveSessionID()+”
”);

session.setMaxInactiveInterval(2);
}

}

Now register the listener in WEB-INF/web.xml
file which makes aware the server about the
SessionListener class that results in calling its
event methods whenever a session is created
and destroyed. Just add the following lines to
the web.xml file.

web.xml:
…………………
…………………
<listener>
 <listener-class>SessionCounter</
listener-class>
</listener>
…………………
…………………

Now restart the server and call the servlet many
times in different browser windows. The result
will be shown like below:

4- Copy a file or directory to the
specified location

This program explains copying a file or directory
and all its sub-directories and files to any
location.

import java.io.*;
public class CopyDirectory
{

public static void main(String[] args) throws
IOException

{
CopyDirectory cd = new CopyDirectory();
BufferedReader in = new

BufferedReader(new
InputStreamReader(System.in));

System.out.println(“Enter the source

Tips & Tricks

 Oct-07 Java Jazz Up 75

directory or file name : “);
String source = in.readLine();
File src = new File(source);
System.out.println(“Enter the destination

directory or file name : “);
String destination = in.readLine();
File dst = new File(destination);
cd.copyDirectory(src, dst);
System.out.println(“File or Directory

copied.”);
}

public void copyDirectory(File srcPath, File
dstPath) throws IOException

{
if (srcPath.isDirectory())
{

if (!dstPath.exists())
{

dstPath.mkdirs();
}

String files[] = srcPath.list();
for (int i = 0; i < files.length; i++)
{

copyDirectory(new File(srcPath, files[i]),
new File(dstPath, files[i]));

}
}
else
{

if (!srcPath.exists())
{

System.out.println(“File or directory
does not exist.”);

System.exit(0);
}
else
{

InputStream in = new
FileInputStream(srcPath);

OutputStream out = new
FileOutputStream(dstPath);

byte[] buf = new byte[1024];
int len;
while ((len = in.read(buf)) > 0)
{

out.write(buf, 0, len);
}
in.close();

out.close();
}

}

}
}

Output:

If the user enter valid path of the file or directory
then it shows a message that it has been copied
to the proper destination.

C:\Program Files\Java\jdk1.6.0\bin>javac
CopyDirectory.java
C:\Program Files\Java\jdk1.6.0\bin>java
CopyDirectory
Enter the source directory or file name :
C:\JavaJazzUp
Enter the destination directory or file name :
D:\RoseIndia\JavaJazzUp
File or Directory copied.
C:\Program Files\Java\jdk1.6.0\bin>

When the user enters wrong source file or
directory name to be copied that does not exist
then it shows a message that the source file or
directory does not exist.

C:\Program Files\Java\jdk1.6.0\bin>java
CopyDirectory
Enter the source directory or file name :
C:\JavaJazzUpNew
Enter the destination directory or file name :
D:\JavaJazzUp
File or directory does not exist.

C:\Program Files\Java\jdk1.6.0\bin>

Tips & Tricks

76 Java Jazz Up Oct-07

Advertise with JavaJazzUp
We are the top most providers of technology

stuffs to the java community. Our technology
portal network is providing standard tutorials,
articles, news and reviews on the Java
technologies to the industrial technocrats. Our
network is getting around 3 million hits per
month and its increasing with a great pace.

For a long time we have endeavored to provide
quality information to our readers. Furthermore,
we have succeeded in the dissemination of the
information on technical and scientific facets of
IT community providing an added value and
returns to the readers.

We have serious folks that depend on our site
for real solutions to development problems.

JavaJazzUp Network comprises of :

http://www.roseindia.net
http://www.newstrackindia.com
http://www.javajazzup.com
http://www.allcooljobs.com

Advertisement Options:

Banner Size Page Views Monthly
Top Banner 470*80 5,00,000 USD 2,000
Box Banner 125 * 125 5,00,000 USD 800
Banner 460x60 5,00,000 USD 1,200
Pay Links Un Limited USD 1,000
Pop Up Banners Un Limited USD 4,000

The http://www.roseindia.net network is the
“real deal” for technical Java professionals.
Contact me today to discuss your customized
sponsorship program. You may also ask
about advertising on other Technology
Network.

Deepak Kumar
deepak@roseindia.net

 Oct-07 Java Jazz Up 77

78 Java Jazz Up Oct-07

