
   Jan-08   Java Jazz Up   1



2    Java Jazz Up   Jan-08



   Jan-08   Java Jazz Up   3

January 2008  Volume I  Issue VII

“Learning new technologies demands
individuals to work together to

construct shared understandings and
knowledge.”

Published by

RoseIndia

JavaJazzUp Team

Editor-in-Chief

Deepak Kumar

Editor-Technical

Ravi Kant

Sr. Graphics Designer

Suman Saurabh

Graphics Designer

Santosh Kumar
Amardeep Patel

Editorial

Register with JavaJazzUp

and grab your monthly issue

“Free”

Dear Readers,

We are back here with the Christmas cum New Year
(Jan’ 2008) issue of Java Jazz-up. The current edition
is specially designed for the sprouting technocrats. This
issue highlights the interesting Java technologies
especially for the beginners.

Though it was a hard job to simplify the complexities of
the technologies like JBoss AS, Hibernate 3.0, Ant tool,
struts 2, JSF and Design Patterns. Still our team has
done a marvelous work in making it easy and simpler for
the new programmers regime. This issue reflects our
consistent attempts to avail the quality technological
updates that enforce the readers to appreciate it a lot
and be a part of its Readers Community.

Java News and Updates section provides the latest
updates of the things happening around the globe
making the readers aware of the java technological
advancement. In this section, you will know the new
features introduced in the existing tools, utilities,
application servers, IDEs, along with the Java API
updates.

The set of articles conferring technologies like Design
patterns, JSF, Hibernate 3.0, Integrating various
technologies like JSF, Spring, Hibernate together etc.
are provided in such a manner that even a novice
learns and implements the concepts in a very easy
manner.

We are providing it in a PDF format so that you can
view and even download it as a whole and get its hard
copy.

Please send us your feedback about this issue and
participate in the Reader’s Forum with your problems,
issues concerned with the topics you want us to
include in our next issues.

Editor-in-Chief
Deepak Kumar
Java Jazz up



4    Java Jazz Up   Jan-08

05 Java News | Apple launched a stack of patches recently fixing at least 18 security
vulnerabilities in its implementation of Java for Mac users. This Java update targets to Mac
systems running OS X 10.4 (Tiger) and earlier versions.Apple claims that none of the
vulnerabilities patched in the Java roll-up are there now in OS  X 10.5 (Leopard).

07 Java Developers Desk: Annotations| Sun Microsystem added the features like
annotation to make the development easier and more efficient in jdk 5. The main
objective to develop the annotations is to make the development easier

13 JBoss Application Server| JBoss is a free, open source application server under the LGPL
license that is widely used for developing and deploying enterprise Java applications (J2EE),
Web applications, and Portals.

15 EJB 3.0 | Enterprise beans are the Java EE server side components that run inside the ejb
container and encapsulate the business logic of an enterprise application. Enterprise applications
are the software applications developed intended to use at large scale.

23 XML and JAXP | “XML is a cross-platform, software and hardware independent tool for
transmittingin formation”

36 Hibernate with Annotation |The Java 5 version has introduced a powerful way to provide
the metadata to the JVM. The mechanism is known as Annotations.

39 Introduction to Ant |Ant is a platform-independent build tool that specially supports for the
Java programming language.

42 Struts2 Data Tags | Apache Struts is an open-source framework used to develop Java web
applications. We started introducing struts generic tags in the November issue. In this section,
we will continue further with the data tags (generic tags) provided with struts 2 framework
and the rest will be included in the subsequent issues of the magazine.

51  Integrating JSF, Spring and Hibernate | This article explains integrating JSF (MyFaces),
Spring and Hibernate to build real world User Login and Registration Application using
MySQL as database. This application lets the new user create an account and existing user
access the application by user name and password.

77 Facelet| Facelet is a view technology for Java Server Faces (JSF) that allows building composite
views more quickly and easily than with JSP which is the default view technology for JSF. JSP
pages are compiled into servlets but it’s not the case with Facelets because Facelet pages are
XML compliant and its framework uses a fast SAXbased compiler to build views

90 Design Patterns | Behavioral Patterns Behavioral patterns are those patterns, which are
specifically concerned with communication (interaction) between the objects. The interactions
between the objects should be such that they are talking to each other and are still loosely
coupled.

96 Tips & Tricks| Copy content from one file to another This example explains how to copy
contents from one file to another file. Copy file is one of the good use of io package of Java.
The logic of program is explained below:

104 Advertise with Us | We are the top most providers of technology stuffs to the java community.

105 Valued JavaJazzup Readers Community | We invite you to post Java-technology
oriented stuff. It would be our pleasure to give space to your posts in JavaJazzup.

Content



   Jan-08   Java Jazz Up   5

Java News and Releases
I. Apple Patches Java, OS X and Safari 3
Flaws

Apple launched a stack of patches recently
fixing at least 18 security vulnerabilities in its
implementation of Java for Mac users. This
Java update targets to Mac systems running
OS X 10.4 (Tiger) and earlier versions.
Apple claims that none of the vulnerabilities
patched in the Java roll-up are there now in OS
X 10.5 (Leopard). However, a fair number of
the fixes in the patch batch for OS X also apply
to Leopard.

II.  Secunia aims to be leading
vulnerability intelligence provider

It is Secunia’s ambition to be the leading
vulnerability intelligence provider and distributor
in the world - second to none.

They have detected few of the vulnerability in
the Sun Java System Web Proxy Server, These
vulnerabilities can be exploited by malicious
people to conduct cross-site scripting attacks.

A such kind of vulnerability is reported in 4.x
versions prior to 4.0.6. It is being illustrated
through an example: Input passed via
unspecified parameters within the View Error
Log functionality is not properly sanitized before
being returned to the user. This can be
exploited to execute arbitrary HTML and script
code in a user’s browser session in context of
an affected site.

Solution is just to update Sun Java System
Web Proxy Server 4.x to version 4.0.6.

Another vulnerability is reported in 4.x versions
prior to 4.0.6 and 3.x versions prior to 3.6
SP11. It is illustrated with an example:
Input passed via unspecified parameters within
the View URL Database functionality is not
properly sanitised before being returned to the
user. This can be exploited to execute arbitrary
HTML and script code in a user’s browser
session in context of an affected site.

Solution is just to update Sun Java System
Web Proxy Server 3.x to version 3.6 Service
Pack 11.

III.  JetBrains added Ruby, Groovy to
Java IDE

Now the plug-ins for dynamic languages are
available. Recently JetBrains has unveiled the
plug-ins that allows the users of its IntelliJ Idea
IDE to accommodate Groovy and Ruby
programming.

The IDE highly supports java development, is
on the way of expansion to accommodate newly
popular dynamic languages. To meet the
purpose, JetBrains is offering its JetGroovy
Plugin 1.0 for Groovy and Grails framework
developers. It is also available for Ruby
development as the Ruby Plugin 1.0.

IV.  Spring Integration: a central service and
message bus
Recently, SpringSource announced the creation
of Spring Integration, a project aimed to provide
a central service and message bus inside the
Spring Framework. This is built on the Spring’s
already-impressive capabilities for providing
simple models for using services. Spring
Integration is a logical next step for Spring, as



6    Java Jazz Up   Jan-08

Java news and releases

it already provides services for JMS, remoting,
scheduling, email, lifecycle management,
transaction management, event publication and
subscription, and transaction management.

The benefit is that a Spring configuration can
manage all of the communication protocol, such
that the service barely has to know it’s a service
for an ESB at all.

V. Major update to WebSphere XD DataGrid
shipped

Recently IBM WebSphere XD DataGrid has
shipped a major update to the ObjectGrid
function known as iFix 3. It includes the
ObjectGrid data grid middleware. ObjectGrid
provides an embeddable distributed memory
platform for implementing complex event
processing, network attached memory, HTTP
Session management, next generation scalable
OLTP databases or XTP style applications. It
provides Map based APIs or an EntityManager
style API as well as a stored procedure like API.
It’s very lightweight and scales from a pair of
JVMs to thousands distributed across multiple
data centers.

VI. Trace Modeler v1.0 released

Trace Modeler v1.0 has been released. It is an
easy-to-use and smart UML sequence diagram
editor that provides immediate and automatic
layout of UML sequence diagrams and simple
drag and drop interface. It’s cross-platform i.e.
runs on any platform. Its main benefit is that it
can save much amount of time. It instantly
updates a diagram’s layout whenever it changes,

freeing you to focus on the actual content.
Furthermore, its layout engine ensures that
every diagram is visually pleasing and
structurally correct. Trace Modeler also offers
a couple of unique features like inlining message
calls, splitting activations, smart flow-based
comment connectors, right-to-left diagram
layout and full bidi-text support for non-
Western scripts, control flow highlighting,
automatic object lifetimes.

VII. Apache ActiveMQ 5.0 released

Apache, powerful and flexible httpd server,
comes with an unrestrictive license. Apache
ActiveMQ is the most powerful open source
Message Broker and Enterprise Integration
Patterns provider. It has recently released
ActiveMQ 5.0 with lot of new features like AMQ
message store, message cursors, blob
messages, a command agent, enterprise
integration patterns, logging a warning,
message transformation and mirrored queues.

VIII. JSFUnit 1.0 Beta 1 released

JSFUnit 1.0, JSF Testing Tool, has been released
recently by Jboss. This Beta release allows
testing JSF applications based on cactus and
Junit. It allows complete integration testing and
unit testing of JSF applications. This version
will use three different testing tools In-container
Testing Framework, Framework for JSF Static
Analysis Testing, JSFTimer for Performance
Testing of the JSF Lifecycle. JSFUnit allows
testing of a running JSF application and even
looking at the HTML output of each client
request.



   Jan-08   Java Jazz Up   7

Java Developers Desk: Annotations
An Introduction to Annotations

Sun Microsystem added the features like
annotation to make the development easier and
more efficient in jdk 5. The main objective to
develop the annotations is to make the
development easier. Annotations behaves like
the meta. The literal meaning of meta data is
data about data. Java also signifies this
meaning. Annotations are like meta data, means
you are free to add your code and can also
apply them to variables, parameters, fields type
declarations, methods and constructors.
Metadata is also used to create the
documentation to perform rudimentary compile
time checking and even for tracking down the
dependencies in code. XDoclet contains all these
features and is widely used. Annotations provide
a means of indicating about methods, classes,
dependencies, incompleteness and also about
the references on other methods and classes
respectively. Quoting from Sun’s official site,
“It (annotation-based development) lets us
avoid writing boilerplate code under many
circumstances by enabling tools to generate it
from annotations in the source code. This leads
to a declarative programming style where the
programmer says what should be done and
tools emit the code to do it.”

Annotation is the way of associating the
program elements with the meta tags so that
the compiler can extract program behavior to
support the annotated elements to generate
interdependent code when necessary.

Fundamentals of annotations

While going through the annotations you
should consider two things. The first one is
the “annotation” itself and second one is the
“annotations types”. An annotation is the
meta tag, used to give some life to the code
you are using. While annotation type is used
to define annotations so that you can use them
while creating your own custom annotations.

An annotation type definition appends an “at”
@ sign at the start of the interface keyword
with the annotation name. On the other hand,
an annotation includes the “at” @ sign followed
by the annotation type. You can also add the

data within the parenthesis after the annotation
name. Lets illustrate the concept more clearly
by using some examples.

Defining an annotation (Annotation type)
public @interface Example {
String showSomething();
}

Annotating the code (Annotation)
Example (showSomething=”Hi! How r you”)
public void anymethod() {
....
}

Annotation Types:

Three types of annotations types are there in
java.

I.  Marker:

Like the marker interface, marker annotations
does not contain any elements except the name
itself. The example given below clarifies the
concept of marker interface.

Example:

public @interface Example{
           }
          Usage:

@Example
public void anymethod() {

              ——————
}

II. Single-value:

This type of elements provide only single value.
It means that these can be represented with
the data and value pair or we can use the
shortcut syntax (just by using the value only
within the parenthesis).

Example:

public @interface Example{
          String showSomething();
           }



8    Java Jazz Up   Jan-08

          Usage:
         @Example (“Hi ! How r you”)
         public void anymethod(){
         ————
         }

Multi-value or Full-value

These types of annotations can have multiple
data members. Therefore use full value
annotations to pass the values to all the data
members.

Example:

public @interface Example{
          String showSomething();
          int num;
          String name;
         }

Usage:

@Example (showSomething = “Hi! How r
you”, num=5, name=”amit” )
         public void anymethod{
         // code here
         }

Rules defining the Annotation type:

Here are some rules that one should follow
while defining and using annotations types

• Start the annotation declaration starting
with the symbol “at” @ following the
interface keyword that should follow the
annotation name.

• Method declaration should not throw
any exception.

• Method declaration should not contain
any parameter.

• Method using annotations should return
a value, one of the types given below:

• String
• primitive
• enum
• Class
• array of the above types

Categorizing Annotations:
JDK 5 contains two categories of
annotations:

Simple annotations:
These types of annotations are used to
annotate the code only. We can not use
these types of annotations for creating the
custom annotation type.

Meta annotations:
Also known as annotations of annotations
are used to annotate the annotation-type
declaration.

I. Simple annotations:
JDK 5 includes three types of simple
annotations.

• Override
• Depricated
• Suppresswarning

JDK 5 does not include many built-in
annotations but it facilitates to core java to
support annotation features. Now will discuss
in brief each of the above simple annotation
types along with examples.

1) Override annotation:

The override annotation ensures that the
annotated method is used to override the
method in the super class. If the method
containing this type of annotation does not
override the method in the super class then
the compiler will generate a compile time error.

Lets take an example and demonstrate what
will happen if the annotated method does not
override the method in the super class.

Example 1:

public class Override_method{
@Override
public String toString(){
return super.toString() +
    “Will generate an compile time error.”;
}
}

Java Developers Desk: Annotations



   Jan-08   Java Jazz Up   9

Suppose there is spell mistake in the method
name such as the name is changed from
toString to toStrimg. Then on compiling the
code will generate the message like this:
Compiling 1 source file to D:tempNew Folder
(2)
TestJavaApplication1buildclasses
D:tempNew Folder
(2)TestJavaApplication1srctest
myannotationTest_Override.java:24: method
does not override a method from its
superclass
@Override
1 error
BUILD FAILED (total time: 0 seconds)

2) Deprecated annotation:
These types of annotations ensure that the
compiler warns you when you use the
deprecated element of the program. The
example given below illustrates this concept.

Example: Lets first create the class containing
the deprecated method.

public class Deprecated_method{
@Deprecated
public void showSomething() {
System.out.println(“Method has been
depricated’”);
}
}

Now lets try to invoke this method from inside
the other class:

public class Test_Deprication {
public static void main(String arg[]) throws
Exception {
new Test_Deprication();
}
public Test_Deprication() {
Deprecated_method d = new
Deprecated_method();
d.showSomething();
}

The method showSomething() in the above
example is declared as the deprecated
method. That means we can’t further use this

method any more. On compiling the class
Depricated_method does not generate any
error. While compiling the class
Test_Deprication generates the message like
this:
Compiling 1 source file to D:tempNew Folder
(2)TestJavaApplication1buildclasses
D:tempNew Folder
(2)TestJavaApplication1srctestmyannotation
Test_Deprication.java:27:
warning: [deprecation] showSomething() in
test.myannotation.Deprecated_method has
been deprecated
d.showSomething();
1 warning

3) Suppresswarning annotation:

These types of annotations ensure that the
compiler will shield the warning message in the
annotated elements and also in all of its sub-
elements. Lets take an example:

Suppose you annotate a class to suppress a
warning and one of its method to suppress
another warning, then both the warning will be
suppressed at the method level only. Lets
demonstrate it by an example:

public class Test_Depricated {
public static void main(String arg[]) throws
Exception {
new TestDepricated().showSomething();
}
@SuppressWarnings({“deprecation”})
public void showSomething() {
Deprecation_method d = new
Deprecation_method();
d.showSomething();
}
}

This example is suppressing the deprecation
warnings that means we can’t see the warnings
any more.

Note: Applying annotation at most deeply
nested elements is a good idea. It is better to
apply annotations at the method level rather
than the class to annotate a particular method.

Java Developers Desk: Annotations



10    Java Jazz Up   Jan-08

II. Meta-Annotations (Annotation
Types):

There are four types of Meta annotations (or
annotations of annotations) defined by the
JDK 5. These are as follows:

• Target
• Retention
• Documented
• Inherited

1) Target annotation:

Target annotation specifies the elements of a
class to which annotation is to be applied. Here
is the listing of the elements of the enumerated
types as its value:

• @Target(ElementType.TYPE)—  applicable
to any element of a class.

• @Target(ElementType.FIELD)—applicable
to field or property.

• @Target(ElementType.PARAMETER)—
applicable to the parameters of a
method.

•
@Target(ElementType.LOCAL_VARIABLE)—
applicable to local variables.

• @Target(ElementType.METHOD)—
applicable to method level annotation.

• @Target(ElementType.CONSTRUCTOR)—
aplicable to constructors.

•
@Target(ElementType.ANNOTATION_TYPE)—
specifies that the declared type itself is
an annotation type.

Here is an example that demonstrates the
target annotation:

Example:

@Target(ElementType.METHOD)
public @interface Test_Element {
public String doTestElement();
}

Now lets create a class that use the
Test_Element annotation:

public class Test_Annotations {
public static void main(String arg[]) {
new Test_Annotations().doTestElement();
}
@Test_Target(doTestElement=”Hi ! How r
you”)
public void doTestElement() {
System.out.printf(“Testing Target Element
annotation”);
}
}

The @Target(ElementType.METHOD)
specifies that this type of annotation can be
applied only at method level. Compiling and
running the above program will work properly.
Lets try to apply this type of annotation to
annotate an element:

public class Test_Annotations {
@Test_Target(doTestElement=”Hi! How r
you”)
private String str;
public static void main(String arg[]) {
new Test_Annotations().doTestElement();
}
public void doTestElement() {
System.out.printf(“Testing Target Element
annotation”);
}
}

Here we are trying to apply

@Target(ElementType.METHOD) at the
field level by declaring the element private
String str; after the
@Test_Target(doTestElement=”Hi ! How r
you”) statement.
On compiling this code will generate an error
like this:

“Test_Annotations.java”:
D:R_AND_DTest_Annotationsrctestmyannotation
Test_Annotations.java:16:
annotation type not applicable to this kind of
declaration at line
16, column 0

Java Developers Desk: Annotations



   Jan-08   Java Jazz Up   11

@Test_Target(doTestElement=”Hi ! How r
you”)
^
Error in javac compilation

2) Retention annotation:

These types of annotation specify where and
how long annotation with this types are to be
retained. There are three type of Retention
annotations are of three types.

• RetentionPolicy.SOURCE: This type of
annotation will be retained only at
source level and the compiler will ignore
them.

• RetentionPolicy.CLASS: This type of
annotation will be retained at the
compile time the virtual machine (VM) will
ignore them.

• RetentionPolicy.RUNTIME: Virtual
machine will retained the annotation of
this type and they can be read only at
run-time.

• Lets demonstrate that how this type of
annotations are applied by taking an
example using RetentionPolicy.RUNTIME.

Example:

@Retention(RetentionPolicy.RUNTIME)
public @interface Retention_Demo {
String doRetentionDemo();
}

This example uses the annotation type
@Retention(RetentionPolicy.RUNTIME) that
indicates the VM will retained your
Retention_Demo annotation so that it can be
read effectively at run-time.

3) Documented annotation:

This type of annotation should be documented
by the javadoc tool. javadoc does not include
the annotation by default. Include the

annotation type information by using
@Documented in the generated document. In
this type of annotation all the processing is done
by javadoc-like tool.

The given example demonstrates the use of
the @Documented annotations.

Example:

@Documented
public @interface Documented_Demo {
String doTestDocumentedDemo();
}

Next, make changes in Test_Annotations class
as follows:
public class Test_Annotations {
public static void main(String arg[]) {
new
Test_Annotations().doTestRetentionDemo();
new
Test_Annotations().doTestDocumentedDemo();
}
@Retention_Demo
(doTestRetentionDemo=”Hello retention
annotation”)
public void doTestRetentionDemo() {
System.out.printf(“Testing ‘Retention’
annotation”);
}
@Documented_Demo
(doTestDocumentedDemo=”Hello Test
documentation”)
public void doTestDocumentedDemo() {
System.out.printf(“Testing ‘Documented’
annotation”);
}
}

4) Inherited Annotation:

This annotation is little bit complex. It inherits
the annotated class automatically. If you specify
@Inherited tag before defining a class then
apply the annotation at your class and finally
extend the class then the child class inherits
the properties of the parent class automatically.
Lets demonstrate the benefits of using the

Java Developers Desk: Annotations



12    Java Jazz Up   Jan-08

@Inherited tag by an example:

Example:
Lets first, define the annotation:

@Inherited
public @interface ParentObjectDemo {
boolean isInherited() default true;
String showSomething() default “Show
anything?”;
}

Now, annotate the class with our
annotation:

@ParentObjectDemo
public Class ChildObjectDemo {
}
The above example shows that you do not
need to define the interface methods inside
the implemented class. The @Inherited tag
automatically inherits the methods for you.
Suppose you define the implementing class in
the old-fashioned-java-style then let us see
the effect of doing this:

public class ChildObjectDemo implements
ParentObjectDemo {
public boolean isInherited() {
return false;
}
public String showSomething() {
return “”;
}
public boolean equals(Object obj) {
return false;
}
public int hashCode() {
return 0;
}
public String toString() {
return “”;
}
public Class annotationType() {
return null;
}
}

Have you seen the difference? You have to
implement all the methods of the parent
interface. You will have to implement the
equals(), toString(), and the hashCode()
methods of the Object class and also the
annotation type method of the
java.lang.annotation.Annotation class. You will
also have to include all these methods in your
class regardless of whether you are
implementing all these methods or not

Java Developers Desk: Annotations



   Jan-08   Java Jazz Up   13

Introduction to JBoss Application Server

JBoss is a free, open source application server
under the LGPL license that is widely used for
developing and deploying enterprise Java
applications (J2EE), Web applications, and
Portals. It provides the full features of J2EE
1.4 such as EJB container as well as extended
enterprise services (EJB) including such as
database access (JDBC), transactions (JTA),
messaging (JTS), naming (JNDI) and
management support (JMX). It also provides
enterprise-class security, and resource
management.

JBoss is a cross-platform Java-based AS, due
to this reason it is usable on any operating
system that Java supports.

Features of JBoss AS:

JBoss is advanced middleware with a full J2EE
based personality.

I. Open Standards and Open Source:
JBoss is an open source J2EE 1.4 certified AS
having business friendly license that allows the
developers to free download, use, embed, and
distribute the JBoss AS.

II. Simplicity:
JBoss AS supports full features of J2EE 1.4
including EJB, JCA, JSP, JMX, HTTP etc. It
provides a bridge for the enterprise Java
programming model, and enables developers
to get started quickly and easily with these
applications.

III. Clustering and High Availability:
JBoss AS provides the clustering of any java
objects (EJB, HTTP, POJO), load balancing, and
distributed deployment features that are
required for deploying large scalable enterprise
applications.

IV. 100% Pure Java:
JBoss is pure Java-based AS. Due to this
reason, it is interoperable with most operating
systems that are capable of running a Java
Virtual Machine (JVM). These OS includes Red
Hat Enterprise Linux, SUSE Linux, Microsoft
Windows, Sun Solaris, HP-UX, and others.

V. Supporting for Breed Technologies:
JBoss AS integrates JAAS, Hibernate, Apache
Tomcat, EJB 3.0, Aspect Oriented Programming
(AOP) and JBoss Cache into its microkernel
foundation approach that is based on Java
Management eXtensions (JMX).

JBoss AS Versions:

JBoss Application Server has been released in
several versions with their sub-versions listed
below.

• JBoss Application Server was started as
an open source EJB container in 1999.

• JBoss 2.x was a full J2EE 1.2 based
server.· JBoss 3.x was a J2EE 1.3 based
server.

• JBoss 4.x is our current J2EE 1.4
production version.

• JBoss 5.x as beta version is a Java EE 5
certified based server.

• JBoss AS 4.2.x versions support for
EJB3.

JBoss 3.x was released to provide full
framework for building such applications that
are based on a Java microkernel (JMX) and
service oriented architecture (SOA). While
JBoss 4.x explores aspect oriented middleware
(AOM) and Java based middleware independent
of J2EE.

JBoss AS 5.x Beta versions include the
following core technologies such as POJO based
microcontainer, EJB 3.0, Hibernate 3.2 - JPA
certified, JBoss Messaging, JBoss WebServices
2.0 (JAX-WS), JBoss Seam 1.1, etc.
JBoss AS Architecuture:

JBoss Application Server



14    Java Jazz Up   Jan-08

Working Process of JBoss AS:

The JBoss creates an MBean server instance
in one of the first steps when it starts up. Then,
it plugs the manageable MBean components by
registering with the MBean server that is a
registry for Mbeans.

JBoss implements the classloading M-Let service
dynamically, which treats as an agent service.
This service allows registering of the MBeans
(specified in a text based configuration files) to
the MBean server.

The functionality is provided by MBeans actually
instead of the JMX MBean server. The MBean
server is only the sense of a microkernel
aggregator component that interconnects the
Mbeans.

In the architecture of Jboss we can also see
the EJB Container as the core implementation
of JBoss server that supports its Plugins,
InstancePool,  EntityPersistenceManager,
StatefulSessionPersistenceManager, to provide
EJB services to a particular EJB.

Getting familiar with JBoss AS 4.2.1.GA

JBoss AS 4.2.1.GA is the first bug fixing
release version of the JBoss Application Server
v4.2 series. Its aim is to fix the most important
bugs against JBossAS v4.2.0.GA that are
reported by the community. There are a few
minor components are upgraded (Hibernate,
JacORB, JBoss TS, JBoss Remoting and Sun
JSF) in this released version.

In this tutorial of JBoss AS, we have used JBoss
AS 4.2.1.GA version in which you will learn,
how to deploy and run an EJB-based application.

I. Downloading and Installing JBoss AS
4.2.1.GA

The JBoss application server 4.2.1.GA is
available as a free download from the JBoss
website. You can download this version from
http://labs.jboss.com/jbossas/downloads/
URL by clicking the Download button or click
here to extract files to save in your disk.
JBoss 4.2.1.GA Platform is easy to install. It
only requires at least a Java 1.4 or Java 1.5
JVM. Apart from this, also make sure for the
JAVA_HOME environment variable that is to be
set to point the JDK installation.

Once you have installed JBoss 4.2.1.GA, the
next step is to learn that how to start the JBoss
server.

II. Starting the Server

After installing JBoss AS, you will find a bin
directory inside the main JBoss directory, which
contains various scripts. Click on the run.bat
file to start the server on Windows, and then
see the log messages from all the JBoss
components as they are deployed and started
up. The last message (obviously with different
values for the time and start-up speed) should
look like the following.

This message verifies that the JBoss as a web
server is running on port 8080 (Make sure you
don’t have anything else already on your
machine using that port).

III. Stopping the Server

To stop the server, you can either press Ctrl+C
on the console or you can run the shutdown
script shutdown.bat from the bin directory.
Alternatively, you can use the management
console. Look for type=Server under the
jboss.system domain and invoke the shutdown
operation.

JBoss Application Server



   Jan-08   Java Jazz Up   15

EJB 3.0
Introduction To Enterprise Java Bean 3.0
(EJB 3.0)

Enterprise beans are the Java EE server side
components that run inside the ejb container
and encapsulate the business logic of an
enterprise application. Enterprise applications
are the software applications developed
intended to use at large scale. These
applications involve large number of data
accessing concurrently by many users.
Enterprise beans are used to perform various
types of task like interacting with the client,
maintaining session for the clients retrieving and
holding data from the database and
communicating with the server.

The Enterprise JavaBeans specification defines
an architecture for a transactional, distributed
object system based on server-side
components. These server-side components
are called enterprise beans or distributed objects
that are hosted in Enterprise JavaBean
containers where it provide remote services for
clients distributed throughout the network.

The EJB Container

An EJB container is nothing but the program
that runs on the server and implements the
EJB specifications. EJB container provides special
type of the environment suitable for running
the enterprise components. The EJB container
manages remote access to the bean, security,
persistence, transactions, concurrency, and
access to and pooling of resources. It hosts an
enterprise bean in the same manner that the
Java Web Server hosts a servlet or an HTML.
An enterprise bean can’t perform functions
outside of an EJB container.

Migration from EJB2 to EJB3

Migrating to EJB 3.0 is a big step towards
simplifying the process of developing EJBs,
which reduces lots of complexities, time and
cost. In spite of being rich featured, developers
feel complex working with previous versions of
EJB.

Migration from EJB 2.1 to EJB 3.0

Lets go through some points justifying reasons
to adopt EJB 3.0 instead of EJB 2.1:

1. In EJB 2.1, home interface extends the
javax.ejb.EJBHome interface and local
home interface extends the
javax.ejb.EJBLocalHome interface. The
EJB 2.1 remote interface extends the
javax.ejb.EJBObject interface and local
interface extends the
javax.ejb.EJBLocalObject interface. In EJB
3.0, home and component interfaces are
replaced with POJI business interfaces.

2. EJB 2.1 needs the developer to implement
a variety of callback methods in the bean
class, like ejbActivate(), ejbPassivate(),
ejbLoad(), and ejbStore(), most of which
were never used. EJB 3.0 doesn’t force
to implement any of these methods and
instead can designate any arbitrary
method as a callback method to receive
notifications for life cycle events.

3. In EJB 2.1, session bean implements the
SessionBean interface and entity bean
implements the EntityBean interface. In
EJB 3.0, session and entity bean classes
are POJOs and do not implement the
SessionBean and EntityBean interfaces.

4. The deployment descriptor, which specifies
the EJB name, the bean class name, the
interfaces, the finder methods etc.is not
required because they are replaced by
metadata annotations in the bean classes.
Annotations are available in JDK 5.0 so
you need JDK 5.0 to develop EJB 3.0 EJBs.

5. In EJB 2.1, client application finds a
reference to entity and session bean
objects using JNDI name but in EJB 3.0,
client finds them using dependency
annotations like @Resource, @Inject, and
@EJB.

6. In EJB 2.1, developers used their own way
to perform database specific operations



16    Java Jazz Up   Jan-08

like primary key generation while EJB 3.0
provides support for several database-
specific operations. The O/R mapping
model has intrinsic support for native SQL.
The O/R mapping is specified using
annotations.

7. Runtime services like transaction and
security are often implemented as the
interceptor methods managed by the
container. However, in EJB 3.0 developers
can write custom interceptor. So
developers have control for the actions
like committing transaction, security check,
etc.

What is new in EJB 3.0?

Now, have a look over the new features of EJB
3.0 that achieved some simplicity over the
previous EJB APIs in various ways:

1. EJBs are now Plain Old Java Objects
(POJOs)

2. No need of home and object interface.

3. No need of any component interface.

4. Unnecessary artifacts and lifecycle
methods are optional

5. Use of java annotations instead of using
XML descriptors

6. Use of dependency injection to simplify
client view

7. Simplify APIs to make flexible for bean’s
environment

8. Defaults are assumed whenever possible

Types of EJB

There are three different types of EJB that are
suited to different purposes:

• Session EJB—A Session EJB is useful
for mapping business process flow (or
equivalent application concepts). Session

EJBs commonly represent “pure”
functionality that is created, as it is
needed.

• Entity EJB—An Entity EJB maps a
combination of data (or equivalent
application concept) and associated
functionality. Entity EJBs are usually
based on an underlying data store and
will be created based on that data within
it.

• Message-driven EJB—A Message-
driven EJB is very similar in concept to a
Session EJB, but is only activated when
an asynchronous message arrives.

Session Bean on EJB Container

Session beans are divided into two parts.

• Stateless: A session bean is the
enterprise bean that directly interacts
with the user and contains the business
logic of the enterprise application. A
session bean represents a single client
accessing the enterprise application
deployed on the server by invoking its
method. An application may contain
multiple sessions depending upon the
number of users accessing to the
application.

• Stateful: These types of beans use the
instance variables that allow the data
persistent across method invocation
because the instance variables allow
persistence of data across method

EJB 3.0



   Jan-08   Java Jazz Up   17

invocation. The client sets the data to
these variables, which he wants to
persist. Stateful session beans have the
extra overhead for the server to
maintain the state than the stateless
session bean.

• In this tutorial, you will learn how a
stateless EJB application is developed
using an Application Server Jboss 4.2.0.
So lets first see the life cycle of a
Stateless Session Bean.

Life Cycle of a Stateless Session Bean:

Since the Stateless session bean does not
passivates across method calls therefore a
stateless session bean includes only two
stages. Whether it does not exist or ready for
method invocation. A stateless session bean
starts its life cycle when the client first obtains
the reference of the session bean. For this,
the container performs the dependency
injection before invoking the annotated
@PreConstruct method if any exists. After
invoking the annotated @PreConstruct
method the bean will be ready to invoke its
method by the client.

The above figure demonstrates how the
Stateless Session Beans are created and
destroyed.

The container calls the annotated @PreDestroy
method while ending the life cycle of the session
bean. After this, the bean is ready for garbage
collection.

In this tutorial, we are going to develop a
Stateless Session Bean Application named
example. The purpose of example is to
perform the mathematical operations such as
Addition, Subtraction, Multiplication, and
Division.

The example application consists of an
enterprise bean, which performs the
calculations, and a web client.

There are following steps that you have to follow
to develop a calculator JEE application.

1. Create the enterprise bean:
CalculatorBean

2. Create web clients: index.jsp,
form.jsp, WebClient.jsp

3. Deploy example onto the server.
4. Using a browser, run the web client.

1.Creating the enterprise bean:
The enterprise bean in our example is a stateless
session bean called CalculatorBean. The
source code for CalculatorBean is in
“com.javajazz/examples/ejb3/stateless”
directory.

Creating CalculatorBean requires these steps:

1) Coding the bean’s Remote business
interface and Enterprise bean class.

2) Compiling the source code with the Ant
tool.

(i) Coding the Business Interface

The business interface defines the business
methods that a client can call remotely. The
business methods are implemented in the
enterprise bean class. The source code for the
CalculatorRemote business interface is given
below.

package
com.javajazzup.examples.ejb3.stateless;
import java.math.*;
import javax.ejb.Remote;
import java.lang.annotation.*;
@Remote
public interface CalculatorRemote {
public float add(float x, float y);
public float subtract(float x, float y);
public float multiply(float x, float y);
public float division(float x, float y);
}

EJB 3.0



18    Java Jazz Up   Jan-08

Note that, the @Remote annotation decorating
the interface definition. This lets the container
know that remote clients will access
CalculatorBean.

(ii) Coding the Enterprise Bean Class
The enterprise bean class for this example is
called CalculatorBean. This class implements
the four business methods (add, subtract,
multiply, division) that are defined in the
CalculatorRemote business interface. The
source code for the CalculatorBean class is
given below.

package
com.javajazzup.examples.ejb3.stateless;
import java.math.*;
import javax.ejb.Stateless;
import javax.ejb.Remote;
@Stateless(name=”CalculatorBean”)
@Remote(CalculatorRemote.class)
public class CalculatorBean implements
CalculatorRemote{

public float add(float x, float y){
return x + y;

   }
   public float subtract(float x, float y){
      return x - y;
   }
    public float multiply(float x, float y){
      return x * y;
   }
   public float division(float x, float y){

   return x / y;
   }
}

Note that, the @Stateless annotation decorating
the enterprise bean class. This lets the container
know that CalculatorBean is a stateless session
bean.

2. Creating a Web Client

The web client is divided into two pages. First
is “form.jsp” where a request form is sent to
the client; second is “WebClient.jsp” which is
called from the “form.jsp” page.

A JSP page is a text-based document that
contains JSP elements, which construct dynamic
content, and static template data, expressed

in any text-based format such as HTML, WML,
and XML.

The source code for the “form.jsp” is given
below.

<html>
    <head>
        <title>Calculator</title>
    </head>
    <body bgcolor=”pink”>
        <h1>Calculator</h1>
        <hr>

<form action=”WebClient.jsp”
method=”POST”>

<p>Enter first value:
            <input type=”text” name=”num1"
size=”25"></p>
            <br>

    <p>Enter second value:
            <input type=”text” name=”num2"
size=”25"></p>
            <br>

<b>Seclect your choice:</b><br>
  <input type=”radio” name=”group1" value
=”add”>Addition<br>
  <input type=”radio” name=”group1" value
=”sub”>Subtraction<br>
  <input type=”radio” name=”group1" value
=”multi”>Multiplication<br>
  <input type=”radio” name=”group1" value
=”div”>Division<br>
  <p>
            <input type=”submit”
value=”Submit”>
            <input type=”reset”
value=”Reset”></p>
        </form>
    </body>
</html>

The following statements given below in
“WebClient.jsp” are used for locating the
business interface, creating an enterprise bean
instance, and invoking a business method.

InitialContext ic = new InitialContext();
CalculatorRemote calculator =
(CalculatorRemote)ic.lookup(“example/
CalculatorBean/remote”);

EJB 3.0



   Jan-08   Java Jazz Up   19

The classes needed by the client are declared
using a JSP page directive (enclosed within the
<%@ %> characters). Because locating the
business interface and creating the enterprise
bean are performed only once, this code appears
in a JSP declaration (enclosed within the <%!
%> characters) that contains the initialization
method, jspInit, of the JSP page. A scriptlet
(enclosed within the <% %> characters)
retrieves the parameters from the request and
converts it to a Float object. Finally, a JSP
scriptlet invokes the enterprise bean’s business
methods, and JSP expressions (enclosed within
the <%= %> characters) insert the results
into the stream of data returned to the client.

The full source code for the WebClient.jsp is
given below.
<%@ page contentType=”text/html;
charset=UTF-8" %>
<%@ page
import=”com.javajazzup.examples.ejb3.stateless.*,
javax.naming.*”%>
 <%!
    private CalculatorRemote calculator = null;

float result=0;
    public void jspInit() {
        try {
            InitialContext ic = new
InitialContext();
            calculator = (CalculatorRemote)
ic.lookup(“example/CalculatorBean/remote”);

System.out.println(“Loaded Calculator
Bean”);
        } catch (Exception ex) {
            System.out.println(“Error:”+
ex.getMessage());
        }
    }
    public void jspDestroy() {
        calculator = null;
    }
%>
        <%

try {
            String s1 =
request.getParameter(“num1”);

String s2 = request.getParameter(“num2”);
String s3 =

request.getParameter(“group1”);
            if ( s1 != null && s2 != null ) {
                Float num1  = new Float(s1);

                Float num2  = new Float(s2);
if(s3.equals(“add”))
result=calculator.add(num1.floatValue(),

num2.floatValue());
else if(s3.equals(“sub”))
result=calculator.subtract(num1.floatValue(),
num2.floatValue());
else if(s3.equals(“multi”))
result=calculator.multiply(num1.floatValue(),
num2.floatValue());
else
result=calculator.division(num1.floatValue(),
num2.floatValue());
         %>
        <p>
        <b>The result is:</b> <%= result %>
        <p>
        <%
}
}// end of try
 catch (Exception e) {
      e.printStackTrace ();
      }
        %>

The source code for the “index.jsp” is given
below that will actual call the client-design form.

<%@page language=”java” %>
<html>
<head>
<title>Ejb3 Stateless Tutorial</title>
</head>
<body bgcolor=”#FFFFCC”>
<p align=”center”><font size=”6"
color=”#800000"><b>Welcome to <br>
Ejb3-Jboss 4.2.0 Tutorial</b></font>
Click <a href=”ejb3/form.jsp”>Calculator
Example</a> to execute Calculator<br></p>
</body>
</html>

3. Deploy calculator application on the
Application Server

To deploy the created example application we
are going to use Jboss 4.2.0 Application Server
about which you have read in the previous

EJB 3.0



20    Java Jazz Up   Jan-08

section of this Javajazzup issue. So you first
need to download the following tools to deploy
this application.

· JDK 1.5 or Higher
· apache-ant-1.7.0
· JBoss 4.2.1

Do the following steps to deploy the calculator
application:

(i) Make a directory structure. You can Click
here to extract the readymade directory
structure according to this tutorial.

(ii)Create the essential deployment descriptor
.xml files.

build.xml

<?xml version=”1.0"?>
<project name=”Jboss Tutorials” default=”all”
basedir=”.”>
    <target name=”init”>

<!— Define  —>
        <property name=”dirs.base”
value=”${basedir}”/>
        <property name=”classdir”
value=”${dirs.base}/build/classes”/>
<property name=”src” value=”${dirs.base}/
src”/>
        <property name=”web”
value=”${dirs.base}/web”/>
        <property
name=”deploymentdescription”
value=”${dirs.base}/deploymentdescriptors”/
>
        <property name=”warFile”
value=”example.war”/>
        <property name=”earFile”
value=”example.ear”/>
        <property name=”jarFile”
value=”example.jar”/>
        <property name=”earDir”
value=”${dirs.base}/build/ear”/>
<property name=”warDir”
value=”${dirs.base}/build/war”/>
        <property name=”jarDir”
value=”${dirs.base}/build/jar”/>

<!— classpath for Project —>
<path id=”library.classpath”>

<pathelement path =”libext/servlet-

api.jar”/>
<pathelement path =”libext/ejb3-

persistence.jar”/>
<pathelement path =”libext/javaee.jar”/

>
<pathelement path =”${classpath}”/>

</path>
        <!— Create Web-inf and classes
directories —>
        <mkdir dir=”${warDir}/WEB-INF”/>
        <mkdir dir=”${warDir}/WEB-INF/
classes”/>
            <!— Create Meta-inf and classes
directories —>
        <mkdir dir=”${earDir}/META-INF”/>
        <mkdir dir=”${jarDir}/META-INF”/>
        <mkdir dir=”${classdir}”/>
    </target>
    <!— Main target  —>
    <target name=”all”
depends=”init,build,buildWar,buildJar,buildEar”/
>
    <!— Compile Java Files and store in /build/
src directory  —>
<target name=”build” >
          <javac srcdir=”${src}”
destdir=”${classdir}” debug=”true”
includes=”**/*.java” >

  <classpath refid=”library.classpath”/>
  </javac>

      </target>
    <!— Create the web archive File —>
    <target name=”buildWar” depends=”init”>
        <copy todir=”${warDir}/WEB-INF/
classes”>
              <fileset dir=”${classdir}”
includes=”**/*.class” />
        </copy>
        <copy todir=”${warDir}/WEB-INF”>
              <fileset
dir=”${deploymentdescription}/web/”
includes=”web.xml” />
        </copy>
        <copy todir=”${warDir}”>
              <fileset dir=”${web}” includes=”**/
*.*” />
        </copy>

            <!— Create war file and place in ear
directory —>        <jar jarfile=”${earDir}/
${warFile}” basedir=”${warDir}” />
    </target>

EJB 3.0



   Jan-08   Java Jazz Up   21

    <!— Create the jar File —>
    <target name=”buildJar” depends=”init”>
        <copy todir=”${jarDir}”>
              <fileset dir=”${classdir}”
includes=”**/*.class” />
        </copy>
        <copy todir=”${jarDir}/META-INF”>
              <fileset
dir=”${deploymentdescription}/jar/”
includes=”ejb-jar.xml,weblogic-cmp-rdbms-
jar.xml,weblogic-ejb-jar.xml” />
        </copy>
            <!— Create jar file and place in ear
directory —>
        <jar jarfile=”${earDir}/${jarFile}”
basedir=”${jarDir}” />
    </target>
<!— Create the ear File —>
    <target name=”buildEar” depends=”init”>
        <copy todir=”${earDir}/META-INF”>
              <fileset
dir=”${deploymentdescription}/ear”
includes=”application.xml” />
        </copy>
            <!— Create ear file and place in ear
directory —>
        <jar jarfile=”../${earFile}”
basedir=”${earDir}” />
        <copy todir=”C:/jboss-4.2.0.GA/server/
default/deploy/”>
              <fileset dir=”../”
includes=”${earFile}” />
       </copy>
    </target>
</project>

Put this file in the base (stateless\code)
directory.

application.xml

<?xml version=”1.0" encoding=”UTF-8"?>
<application xmlns=”http://java.sun.com/xml/
ns/javaee” xmlns:xsi=”http://www.w3.org/
2001/XMLSchema-instance” version=”5"
xsi:schemaLocation=”http://java.sun.com/
xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_5.xsd”>

<display-name>Stateless Session Bean
Example</display-name>

<module>
<web>

<web-uri>example.war</web-uri>
<context-root>/example</context-root>

</web>
</module>
<module>

<ejb>example.jar</ejb>
</module>

</application>

Put this file in the
Stateless\code\deploymentdescriptors\ear
directory.

web.xml
<?xml version=”1.0" encoding=”UTF-8"?>
<!DOCTYPE web-app PUBLIC “-//Sun
Microsystems, Inc.//DTD Web Application 2.3/
/EN” “http://java.sun.com/dtd/web-
app_2_3.dtd”>
<web-app >
</web-app>

Put this file in the
Stateless\code\deploymentdescriptors\web
directory.

Put all .jsp files in the Stateless\code\web
directory.

Put all .java files in the Stateless\code\src
directory.

(iii)Start command prompt, and go to the
Stateless\code directory. Then type the
command as:

C:\Stateless\code>ant build.xml
The Ant tool will deploy the example.ear file
to the jboss-
4.2.0.GA\server\default\deploy directory.
4. Running the example application Web
Client

Open the web browser and type the following
URL to run the application:

EJB 3.0



22    Java Jazz Up   Jan-08

http://localhost:8080/example

Click at the given link as Calculator Example:

Give values to the textbox and choose the desire
option button as Addition then clicks the
Submit button to get the result.

Download the full source code

EJB 3.0



   Jan-08   Java Jazz Up   23

XML and JAXP
Introduction to XML

About XML

“XML is a cross-platform, software and
hardware independent tool for transmitting
information”

XML is a W3C Recommendations. It stands for
Extensible Markup Language. It is a markup
language much like HTML used to describe data.
In XML, tags are not predefined. A user defines
his own tags and XML document structure like
Document Type Definition (DTD), XML Schema
to describe the data. Hence it is self-descriptive
too. There is nothing special about XML It is
just plain text with the addition of some XML
tags enclosed in angle brackets. In a simple
text editor, the XML document is easily visible.

Reasons of using XML

There are number of reasons that contributes
to the XML’s increasing acceptance, few of them
are:

1. Plain Text

In XML it is easy to create and edit files with
anything from a standard text editor to a visual
development environment. XML also provides
scalability for anything from small configuration
files to a company-wide data repository.

2. Data Identification

The markup tags in XML documents identifiy
the information and break up the data into parts
for example.. a search program can look for
messages sent to particular people from the
rest of the message. Different parts of the
information are identified and further they can
be used in different ways by different
applications.

3. Stylability

When display matters, the style sheet
standard, XSL (an advance feature of XML),
lets you dictate over the convectional designs
(like using HTML) to portray the data. XML being
style-free, uses different style sheets to produce

output in postscript, TEX, PDF, or some new
format that hasn’t even been invented yet. A
user can use a simple XML document to display
data in diverse formats like

• A plain text file
• An XHTML file
• A WML (Wireless Markup Language)

document suitable for display on a PDA
• An Adobe PDF document suitable for

hard copy
• A VML (Voice Markup Language) dialog

for a voicemail information system
• An SVG (Scalable Vector Graphic)

document that draws pictures of
thermometers and water containers

4. Universally Processed

Apart from being valid, restrictions are imposed
on an xml file to abide by a DTD or a Schema
to make it well formed. Otherwise, the XML
parser won’t be able to read the data. XML is a
vendor-neutral standard, so a user can choose
among several XML parsers to process XML
data.

5. Hierarchical Approach

XML documents get benefited from their
hierarchical structure. Hierarchical document
structures are, faster to access. They are also
easier to rearrange, because each piece is
delimited. This makes xml files easy to modify
and maintain.

6. Inline Reusability

XML documents can be composed of separate
entities. XML entities can be included “in line” in
a XML document. And this included sections
look like a normal part of the document .A user
can single-source a section so that an edit to it
is reflected everywhere the section is used, and
yet a document composed looks like a one-
piece document.



24    Java Jazz Up   Jan-08

Applications using XML

Although there are countless applications that
use XML, here are a few examples of the
applications that are making use of this
technology.

Refined search results - With XML-specific
tags, search engines can give users more
refined search results. A search engine seeks
the term in the tags, rather than the entire
document, giving the user more precise results.

EDI Transactions - XML has made electronic
data interchange (EDI) transactions accessible
to a broader set of users. XML allows data to
be exchanged, regardless of the computing
systems or accounting applications being used.

Cell Phones - XML data is sent to some cell
phones, which is then formatted by the
specification of the cell phone software designer
to display text, images and even play sounds!

File Converters - Many applications have been
written to convert existing documents into the
XML standard. An example is a PDF to XML
converter.

VoiceXML - Converts XML documents into an
audio format so that a user can listen to an
XML document.

History of XML

In the 1970’s, Charles Goldfarb, Ed Mosher and
Ray Lorie invented GML at IBM. GML was used
to describe a way of marking up technical
documents with structural tags. The initials
stood for Goldfarb, Mosher and Lorie.

Goldfarb invented the term “mark-up language”
to make better use of the initials and it became
the Standard Generalised Markup Language.

In 1986, SGML was adopted by the ISO.

SGML is just a specification for defining markup
languages.

SGML (Standardized Generalized Markup
Language) is the mother of all markup

languages like HTML, XML, XHTML, WML etc...

In 1986, SGML became an international
standard for defining the markup languages. It
was used to create other languages, including
HTML, which is very popular for its use on the
web. HTML was made by Tim Berners Lee in
1991.

While on one hand SGML is very effective but
complex, on the other, HTML is very easy, but
limited to a fixed set of tags. This situation
raised the need for a language that was as
effective as SGML and at the same time as
simple as HTML. This gap has now been filled
by XML.

The development of XML started in 1996 at
Sun Microsystems.  Jon Bosak with his team
began work on a project for remoulding SGML.
They took the best of SGML and produced
something to be powerful, but much simpler to
use.

The World Wide Web Consortium also
contributes to the creation and development
of the standard for XML. The specifications for
XML were laid down in just 26 pages, compared
to the 500+ page specification that define SGML.

Difference between HTML and XML

1. XML is designed to carry data.

XML describes and focuses on the data while
HTML only displays and focuses on how data
looks. HTML is all about displaying information
but XML is all about describing information. In
current scenario XML is the most common tool
for data manipulation and data transmission.

XML is used to store data in files and for sharing
data between diverse applications. Unlike HTML
document where data and display logic are
available in the same file, XML hold only data.
Different presentation logics could be applied
to display the xml data in the required format.
XML is the best way to exchange information.

2. XML is Free and Extensible.

3. XML tags are not predefined. User

XML and JAXP



   Jan-08   Java Jazz Up   25

must “invent” his tags.

The tags used to mark up HTML documents
and the structure of HTML documents is
predefined. The author of HTML documents
can only use tags that are defined in the
HTML standard (like <p>, <h1>, etc.).

XML allows the user to define his own tags
and document structure.

4. XML Tags are Case Sensitive

Unlike HTML, XML tags are case sensitive. In
HTML the following will work:

<Message>This is incorrect</message>

In XML opening and closing tags must
therefore be written with the same case:

<message>This is correct</message>

5. XML Elements Must be Properly Nested

Improper nesting of tags makes no sense to
XML.

In HTML some elements can be improperly
nested within each other like this:

<b><i>This text is bold and italic</b></i>

In XML all elements must be properly nested
within each other like this:

<b><i>This text is bold and italic</i></b>

6. XML is a Complement to HTML, not a
replacement for HTML.

It is important to understand that XML is not
a replacement for HTML. In Web development
it is most likely that XML will be used to
describe the data, while HTML will be used to
format and display the same data.
Syntax Rules for XML

The syntax rules for XML are very simple and

strict. These are easy to learn and use.
Because of this, creating software that can
read and manipulate XML is very easy. Xml
enables a user to create his own tags.

Note - XML documents use a self-describing
and simple syntax

Let’s develop a simple XML document:

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

The XML declaration:

The XML declaration should always be
included in the first line of the xml document.
It defines the XML version and the character
encoding used in the document. In this case
the document conforms to the 1.0
specification of  XML and uses the ISO-8859-
1 (Latin-1/West European) character set.

<?xml version=”1.0" encoding=”ISO-8859-
1"?>

Root Element:

The next line defines the first element of the
document. It is called as the root element

<E-mail>

Child Elements:

Next 4 lines describe the four child elements
of the root (To, From, Subject and Body).

<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>

XML and JAXP



26    Java Jazz Up   Jan-08

And finally the last line defines the end of the
root element.

</E-mail>

You may feel from this example that the XML
document contains an E-mail To Rohan From
Amit. Don’t you agree that XML is quite self-
descriptive?

Now let’s discuss its syntax-rules which are
very simple to learn.
All XML elements must have a closing tag

In XML all the elements must have a closing
tag like this:

<To>Rohan</To>
<From>Amit</From>

XML tags are case sensitive

XML tags are case sensitive. The tag <To> is
different from the tag <to>. Hence the
opening and closing tags must be written with
the same case:

<To>Rohan</To>
<to>Rohan</to>

XML Elements Must be Properly Nested

Improper nesting of tags makes no sense to
XML. In XML all elements must be properly
nested within each other like this in a logical
order:

<b><i>Hi , how are you.....</i></b>

XML Documents Must Have a Root
Element

All XML documents must contain a single tag
pair to define a root element. All other
elements must be written within this root
element. All elements can have sub elements
called as child elements. Sub elements must
be correctly nested within their parent
element:

<root>
  <child>
    <subchild>.....</subchild>
  </child>
</root>

Always Quote the XML Attribute Values

In XML the attribute value must always be
quoted. XML elements can have attributes in
name/value pairs just like in HTML. Just look
the two XML documents below.
The error in the first document is that the
date and version attributes are not quoted .

<?xml version=1.0 encoding=”ISO-8859-
1"?>
<E-mail date=12/11/2002/>

The second document is correct:

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail date=”12/11/2002"/>

With XML, White Space is preserved

With XML, the white space in a document is
preserved.

So a sentence likes this: Hello              How
are you, will be displayed like this:

Hello              How are you,

Comments in XML

The syntax for writing comments in XML is
similar to that of HTML.

<!— This is a comment —>

XML Elements

XML Elements are extensible. They have

XML and JAXP



   Jan-08   Java Jazz Up   27

relationships. They have simple naming rules.

XML Elements are Extensible
XML documents can be extended to carry
more information.

Look at the following XML example:

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

Let’s suppose that we create an application to
fetch data from the above  XML document
and produce this output:

E-mail

To: Rohan
From: Amit

Be ready for a cruise...i will catch u tonight

Now, the author wants to add a new feature
(let it be a subject line). He can easily achieve
it by adding one more tag ie..<Subject>in the
xml document. So the new modified xml
document will look like this:

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>
Now the new generated output will look like
this:

E-mail

To: Rohan
From: Amit

Subject: Surprise....

Be ready for a cruise...i will catch u tonight

XML Elements have Relationships

Elements in a xml document are related as
parents and children.

Imagine that this xml document is a description
of e-mail:

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

Here, E-mail is the root element while To, From,
Subject and Body are the child elements of the
E-mail. Here, E-mail is the parent element of
To, From, Subject and Body. To, From, Subject
and Body are siblings (or sister elements)
because they have the same parentage. Hence,
all the XML Elements have Relationships.

XML Element Naming conventions:

XML elements must follow these naming
conventions:

Names must not start with a number or
punctuation character but it can contain letters,
numbers, and other characters without spaces.

Names must not start with the letters xml (or
XML, or Xml, etc).

XML Attributes

XML elements can have attributes in the start
tag, just like HTML. Attributes are used to
provide additional information about elements.
Attributes often provide information that
is not a part of the data. In the example below,
the file type is irrelevant to the data, but

XML and JAXP



28    Java Jazz Up   Jan-08

important to the software that wants to
manipulate the element:

<file type=”gif”>roseindia.gif</file>

Use the quote styles: “red” or ‘red’

Attribute values must always be enclosed in
quotes. Use either single or double quotes
eg..

<color=”red”>

or like this:

<color=’red’>

Note: If the attribute value itself contains
double quotes it is necessary to use single
quotes, like in this example:

<name=’Rose “India” Net’>

Note: If the attribute value itself contains
single quotes it is necessary to use double
quotes, like in this example:

<name=”Rose ‘India’ Net”>

Use of Elements vs. Attributes

If you start using attributes as containers for
XML data, you might end up with the
documents that are both difficult to maintain
and  manipulate. So the user should use
elements to describe the data. Use attributes
only to provide data that is not relevant to
the reader. Only metadata (data about data)
should be stored as attributes, and that data
itself should be stored as elements.

This is not the way to use attributes eg..

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail To=”Rohan” From=”Amit”
Subject=”Surprise....”
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

Try to avoid using attributes in few of the
situations.

Lot of problems occur with using attributes
values. They are not easily expandable and
cannot contain multiple values. They are not
easy to test against a Document Type Definition
and are also unable to describe their structure.
Becomes more irritating, because of its difficultly
to get manipulated by program code.

Here is an example, demonstrating how
elements can be used instead of attributes. The
following three XML documents contain exactly
the same information. A date attribute is used
in the first, a date element is used in the second,
and an expanded date element is used in the
third:

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail date=”15/05/07">
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

First xml document contains date as a attribute
which can not be further extended. But date
used a element in second document makes it
more flexible.

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail >
<date=”15/05/07">
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

Second xml document can be further
extended as.

XML and JAXP



   Jan-08   Java Jazz Up   29

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail >
<date>
      <day>12</day>
      <month>11</month>
      <year>99</year>
</date>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

XML Validation

XML with correct syntax is Well Formed XML.
XML validated against a DTD or a Schema is a
Valid XML.

Well Formed XML Documents

A “Well Formed” XML document has correct
XML syntax. A “Well Formed” XML document
is a document that conforms to the XML
syntax rules which were described previously.

• XML documents must have a root element
• XML elements must have a closing tag
• XML tags are case sensitive
• XML elements must be properly nested
• XML attribute values must always be quoted

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

Valid XML Documents:

A “Valid” XML document is a “Well Formed” XML
document, which also conforms to the rules of
a Document Type Definition (DTD) or a XML

Schema.

The following xml document is validated against
a DTD , notice the highlighted text.

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<!DOCTYPE e-mail SYSTEM “InternalE-
mail.dtd”>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

XML DTD

A DTD defines the legal elements of an XML
document. The purpose of a DTD is to define
the legal building blocks of an XML document.
It defines the document structure with a list of
legal elements.

XML Schema

XML Schema is an XML based alternative to DTD
.W3C supports an alternative to DTD called XML
Schema.

Designing XML DTD

1. Introduction to DTD
2. DTD - XML Constituent Components
3. DTD Elements
4. DTD Attributes
5. DTD Entities

1. Introduction to DTD:

A Document Type Definition (DTD) defines the
legal building blocks of an XML document. It
defines the document structure with a list of
legal    elements and attributes.

A DTD can be defined inside a XML document,
or a external reference can be declared.

Internal DTD

If the DTD is defined inside the XML

XML and JAXP



30    Java Jazz Up   Jan-08

document, it should be wrapped in a
DOCTYPE definition with the following syntax:

<!DOCTYPE root-element [element-
declarations]>

Example of a XML document with an internal
DTD: E-mail.xml

<?xml version=”1.0"?>
<!DOCTYPE E-mail[
  <!ELEMENT E-mail (To,From,subject,Body)>
  <!ELEMENT To (#PCDATA)>
  <!ELEMENT From (#PCDATA)>
  <!ELEMENT Subject (#PCDATA)>
  <!ELEMENT Body (#PCDATA)>
]>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>

Open the file E-mail.xml in a web-browser.

External DTD

If the DTD is defined in an external file, it
should be wrapped in a DOCTYPE definition
with the following syntax:

<!DOCTYPE root-element SYSTEM
“filename”>

This is the same XML document as
above,(but with an external DTD ) : E-
mail.xml

<?xml version=”1.0"?>
<!DOCTYPE E-mail SYSTEM “E-mail.dtd”>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...i will catch u
tonight</Body>
</E-mail>
And this is the file “E-mail.dtd” which contains
the following DTD:

<!ELEMENT E-mail (To,From,subject,Body)>
<!ELEMENT To (#PCDATA)>
<!ELEMENT From (#PCDATA)>
<!ELEMENT Subject (#PCDATA)>
<!ELEMENT Body (#PCDATA)>

Open the file E-mail.xml in a web-browser.

Importance of a DTD:

1. With a DTD, a XML file carries a
description of its own format.

2. With a DTD, independent groups of
people can agree to use a standard DTD
for interchanging data.

3. User application can use a standard DTD
to verify that the data he receives from
the outside world is valid.

4. User can also use a DTD to verify his
own data.

XML and JAXP



   Jan-08   Java Jazz Up   31

2. DTD - XML Constituent

DTDs are made up by the following
integrants:

· Elements
· Attributes
· Entities
· PCDATA
· CDATA

Elements

Elements are the main constituent components
of both XML documents.

Elements can contain text, other elements, or
be empty.

<To>Rohan</To>
<From>Amit</From>

Attributes
Attributes provide extra information about
elements. Attributes are always placed inside
the opening tag of an element. Attributes
always come in name/value pairs. The
following “img” element has additional
information about a source file:

<img src=”computer.gif” />

The name of the element is “img”. The name of
the attribute is “src”. The value of the attribute
is “computer.gif”. Since the element itself is
empty it is closed by a “ /”.

Entities:

Entities are expanded when a document is
parsed by a XML parser. Some characters have
a special meaning in XML, like the less than
sign (<) that defines the start of an XML tag,
the greater than sign (>) that defines the end
of a XML tag.

The following entities are predefined in
XML:

Entity References    Character
&lt; <
&gt; >
&amp;    &
&quot;  “
&apos;    ‘

PCDATA:

PCDATA means parsed character data. It can
be thought as the character data (text) found
between the start tag and the end tag of a
XML element. PCDATA is a text to be parsed by
a parser. The text is checked by the parser for
entities and markup.

Tags inside the text will be treated as markup
and entities will be expanded. However, parsed
character data should not contain any &, <, or
> characters. These should be represented by
the &amp, &lt, and &gt entities, respectively.

CDATA:

CDATA is character data that will NOT be parsed
by a parser. Tags inside the text will NOT be
treated as markup and entities will not be
expanded.

3. DTD-Elements

In a DTD, elements are declared with an
ELEMENT declaration.

Declaring Elements: syntax

In a DTD, XML elements are declared with the
following syntax:

<!ELEMENT element-name category>
or
<!ELEMENT element-name (element-
content)>

Empty Elements
Empty elements are declared with the
keyword EMPTY inside the parentheses.

<!ELEMENT element-name EMPTY>

XML and JAXP



32    Java Jazz Up   Jan-08

DTD Example: <!ELEMENT br EMPTY>

In XML document:

  <br />

Elements with Parsed Character Data
Elements with only parsed character data are
declared with  #PCDATA inside the
parentheses:

<!ELEMENT element-name (#PCDATA)>

DTD Example:

<!ELEMENT To (#PCDATA)>
<!ELEMENT From (#PCDATA)>

Elements with Data
Elements declared with the keyword ANY, can
contain any combination of parsable data:

<!ELEMENT element-name ANY>

DTD Example:

<!ELEMENT E-mail (To,From,Subject,Body)>
<!ELEMENT To (#PCDATA)>
<!ELEMENT From (#PCDATA)>

Elements with Children (sequences)
Elements with one or more children are
declared with the name of the children
elements inside the parentheses as:

<!ELEMENT element-name (child1)>
or
<!ELEMENT element-name (child1,child2,...)>

DTD Example:

<!ELEMENT E-mail (To,From,Subject,Body)>

When children are declared in a sequence
separated by commas, the children must
appear in the same sequence in the
document. In a full declaration, the children
must also be declared.Children can  have

children. The full declaration of the “E-mail”
element is:

<!ELEMENT E-mail (To,From,Subject,Body)>
<!ELEMENT To (#PCDATA)>
<!ELEMENT From (#PCDATA)>
<!ELEMENT Subject (#PCDATA)>
<!ELEMENT Body (#PCDATA)>

Declaring Only One Occurrence of an Element

<!ELEMENT element-name (child-name)>

DTD Example:

<!ELEMENT  color  (Fill-Red)>

The example above declares that the child
element “Fill-Red” must occur once, and only
once inside the “color” element.

Declaring Minimum One Occurrence of an
Element

<!ELEMENT element-name (child-name+)>

DTD Example:

<!ELEMENT color  (Fill-Red+)>

The ‘+’ sign in the example above declares
that the child element “Fill-Red” must occur
one or more times inside the “color” element.

Declaring Zero or More Occurrences of an
Element

<!ELEMENT element-name (child-
name*)>

DTD Example:

<!ELEMENT color (Fill-Red*)>

The ‘*’ sign in the example above declares
that the child element  “Fill-Red” can occur
zero or more times inside the “color” element.

XML and JAXP



   Jan-08   Java Jazz Up   33

Declaring Zero or One Occurrence of an
Element

<!ELEMENT element-name (child-name?)>

DTD Example:

<!ELEMENT color (Fill-Red?)>

The ‘?’ sign in the example above declares
that the child element “Fill-Red”  can occur
zero or one time inside the “color” element.

Declaring either/or Content
DTD Example:

<!ELEMENT E-mail
(To,From,Subject,(Message|Body))>

The example above declares that the “E-mail”
element must contain a “To” element, a
“From” element, a “Subject” element, and
either a “Message” or a “Body” element.

Declaring Mixed Content

DTD Example:

<!ELEMENT E-
mail(#PCDATA|To|From|Subject|Body)*>

The example above declares that the “E-mail”
element can contain zero or more occurrences
of a parsed character data, “To”, “From”,
“Subject”, or “Body” elements.

4. DTD-Attributes

In a DTD, attributes are declared with an
ATTLIST declaration.

Declaring Attributes

The ATTLIST declaration defines the element
having a attribute with attribute name , attribute
type , and  attribute default  value. An attribute
declaration has the following syntax:

<!ATTLIST element-name attribute-name
attribute-type default-value>

DTD example:

<!ATTLIST reciept type CDATA “check”>

XML example:

<reciept type=”check” />

Attribute-type

The attribute-type can be one of the
following:

Type Description

CDATA The value is character data
(en1|en2|..) The value must be one from an
enumerated list
ID The value is a unique id
IDREFThe value is the id of another element
IDREFS The value is a list of other ids
NMTOKEN The value is a valid XML name
NMTOKENS The value is a list of valid XML
names
ENTITY The value is an entity
ENTITIESThe value is a list of entities
NOTATION The value is a name of a notation
xml The value is a predefined xml value

Default-value
The default-value can be one of the following:
Value Explanation
value The default value of the attribute
#REQUIRED The attribute is required
#IMPLIED The attribute is not required
#FIXED value The attribute value is fixed

A Default Attribute Value

DTD Example:

<!ELEMENT Scale EMPTY>
<!ATTLIST Scale length CDATA “0”>

In the example above, the DTD defines a

XML and JAXP



34    Java Jazz Up   Jan-08

“Scale” element  to be  empty with a “length “
attribute of  type CDATA . If no length is
specified, it has a default value of 0.

Valid XML:

<Scale length =”100" />

REQUIRED Syntax

<!ATTLIST element-name attribute_name
attribute-type #REQUIRED>

DTD Example

<!ATTLIST person number CDATA
#REQUIRED>

Valid XML:

<person id=”5677" />

Invalid XML:

<person />

Use the #REQUIRED keyword if you don’t
have an option for a default value, but still
want to force the attribute to be present.

IMPLIED Syntax

<!ATTLIST element-name attribute-name
attribute-type #IMPLIED>

DTD Example

<!ATTLIST emergency no. CDATA #IMPLIED>

Valid XML:

<emergency no.=”555-667788" />

Valid XML:

<emergency/>

Use the #IMPLIED keyword if you don’t want
to force the author to include an attribute,
and you don’t have an option for a default
value.

FIXED Syntax

<!ATTLIST element-name attribute-name
attribute-type #FIXED “value”>

DTD Example

<!ATTLIST Client CDATA #FIXED
“RoseIndia”>

Valid XML:

<Client =”RoseIndia” />

Invalid XML:

<Client=”LotusIndia” />

Use the #FIXED keyword when you want an
attribute to have a fixed value without
allowing the author to change it. If an author
includes another value, the XML parser will
return an error.

Enumerated Attribute Values

Syntax

<!ATTLIST element-name attribute-name
(en1|en2|..) default-value>

XML and JAXP



   Jan-08   Java Jazz Up   35

DTD Example

<!ATTLIST reciept type (check|cash) “cash”>

XML example:

<reciept type=”check” />
or
<reciept type=”cash” />

Use enumerated attribute values when you
want the attribute value to be one of a fixed
set of legal values.

5. DTD-Entities

Entities are variables used to define shortcuts
to standard text or special characters. Entity
references are references to entities Entities
can be declared internally or externally.

Internal Entity Declaration
Syntax

<!ENTITY entity-name “entity-value”>

DTD Example:

<!ENTITY name “Amit”>
<!ENTITY company “RoseIndia”>

XML example:

<Profile>&name;&company;</Profile>

Note: An entity has three parts: an
ampersand (&), an entity name, and a
semicolon (;).

An External Entity Declaration
Syntax

XML and JAXP

<!ENTITY entity-name SYSTEM “URI/URL”>

DTD Example:

<!ENTITY name SYSTEM “http://
www.roseindia.net/entities.dtd”>
<!ENTITY company SYSTEM “http://
www.roseindia.net/entities.dtd”>

XML example:

<Profile>&name;&company;</Profile>



36    Java Jazz Up   Jan-08

Hibernate with Annotation
In the Dec 2007 issue of Java Jazz Up

magazine, we have discussed a lot of
details about the Hibernate. In the current issue
we are taking you further in the same direction
but this time we are talking about the
annotations with the hibernate.

Hibernate needs a metadata to govern the
transformation of data from POJO to database
tables and vice versa. Most commonly XML file
is used to write the metadata information in
Hibernate

Annotations :  A Brief Overview

The Java 5 version has introduced a powerful
way to provide the metadata to the JVM. The
mechanism is known as Annotations.
Annotation is the java class which is read
through reflection mechanism during the
runtime by JVM and does the processing
accordingly. The Hibernate Annotations is the
powerful way to provide the metadata for the
Object and Relational Table mapping. All the
metadata is clubbed into the POJO java file along
with the code this helps the user to understand
the table structure and POJO simultaneously
during the development. This also reduces the
management of different files for the metadata
and java code.

Prerequisites for setting up a project :

1. Make sure to have Java 5.0 or a higher
version.

2. Hibernate Core 3.2.0GA and above.

3. Download and add the Hibernate-
Annotations jar file in the project
workspace.

Let’s start with developing an Application :

Let us assume we have a table Employee which
has only two columns i.e ID and Name. In
hibernate core to achieve the mapping for the
above employee table the user should create
the following files

1. Utility file for configuring and building the
session factory.

2. Hibernate.cfg.xml or any other
Datasource metadata file

3. Employee POJO object.
4. Real application file which has the actual

logic manipulate the POJO

Note:- Annotations are only the step to remove
the hbm.xml file so all the steps remain same
only some modifications in some part and
adding the annotation data for the POJO.

Please note that coming example will use the
Employee table from the database. The SQL
query to create the employee table is as
follows :-

Create table Employee( ID int2 PRIMARY
KEY, NAME n varchar(30) );

Step 1:- Creating A simple Utility Class

The following is the code given for the utility
class for sessionFactory

package net.roseindia;

import org.hibernate.SessionFactory;
import
org.hibernate.cfg.AnnotationConfiguration;

public class HibernateUtil {
  private static final SessionFactory
sessionFactory;
  static {
    try {
      // Create the SessionFactory from
hibernate.cfg.xml
      sessionFactory = new
AnnotationConfiguration().configure().buildSessionFactory();
    }

     catch (Throwable ex) {
      // Make sure you log the exception, as it
might be swallowed
      System.err.println(“Initial SessionFactory
creation failed.” + ex);

      throw new
ExceptionInInitializerError(ex);
    }
  }



   Jan-08   Java Jazz Up   37

  public static SessionFactory
getSessionFactory() {
    return sessionFactory;
  }
}

If you see the only change in the file for the
annotations is that we simply use
AnnotationConfiguration() class instead of the
Configuration() class to build the
sessionFactory for the hibernate.

Step 2: Creating the Hibernate.cfg.xml

The Hibernate.cfg.xml is the configuration file
for the datasource in the Hibernate world. The
following is the example for the configuration
file.

<?xml version=’1.0' encoding=’utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
”-//Hibernate/Hibernate Configuration DTD
3.0//EN”
”http://hibernate.sourceforge.net/hibernate-
configuration-3.0.dtd”>
<hibernate-configuration>
<session-factory>
<!— Database connection settings —>
<property
name=”connection.driver_class”>com.mysql.jdbc.Driver</
property>
<property
name=”connection.url”>jdbc:mysql://
localhost:3306/test</property>
<property
name=”connection.username”>root</
property>
<property
name=”connection.password”>root</
property>
<!— JDBC connection pool (use the built-in)
—>
<property name=”connection.pool_size”>1
</property>
<!— SQL dialect —>
<property name=”dialect”>
org.hibernate.dialect.MySQLDialect
</property>
<!— Enable Hibernate’s automatic session
context management —>

<property
name=”current_session_context_class”>thread
</property>
<!— Disable the second-level cache —>
<property name=”cache.provider_class”>
org.hibernate.cache.NoCacheProvider
</property>
<!— Echo all executed SQL to stdout —>
<property name=”show_sql”>true
</property>
<!— Drop and re-create the database
schema on startup —>
<property name=”hbm2ddl.auto”>none
</property>

<mapping class=”com.roseindia.Employee”/>

</session-factory>
</hibernate-configuration>

The only change is that, we are just telling
the compiler that instead of any resource get
the metadata for the mapping from the POJO
class itself like in this case it is
net.roseindia.Employee.

Note: Using annotations does not mean that
you cannot give the hbm.xml file mappng. You
can mix annotations and hbm.xml files mapping
for different Pojo but you cannot mix the
mappings for the same POJO in both ways.

Step 3: Developing a simple POJO

The major changes occurred only in the POJO
files if you want to use the annotations as this
is the file which will now contain the mapping of
the properties with the database.

The following is the code for the Employee
POJO.

package net.roseindia;

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity

Hibernate with Annotation



38    Java Jazz Up   Jan-08

@Table(name = “employee”)
public class Employee implements
Serializable {
  public Employee() {

  }
  @Id
  @Column(name = “id”)
  Integer id;

  @Column(name = “name”)
  String name;

  public Integer getId() {
    return id;
  }

  public void setId(Integer id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

}

In the EJB word the entities represent the
persistence object. This can be achieved by
@Entity at the class level. @Table(name =
“employee”) annotation tells the entity is
mapped with the table employee in the
database. Mapped classes must declare the
primary key column of the database table. Most
classes will also have a Java-Beans-style
property holding the unique identifier of an
instance. The @Id element defines the mapping
from that property to the primary key column.
@Column is used to map the entities with the
column in the database.

Step 4: Real application file which has the
actual logic manipulate the POJO

The following code demonstrates how to store
an entity in the database. The code is identical
as you have used in the Hibernate applications.

package net.roseindia;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;

public class Example1 {

  /**
   * @param args
   */
  public static void main(String[] args)
throws Exception {
    /** Getting the Session Factory and
session */
    SessionFactory session =
HibernateUtil.getSessionFactory();
    Session sess =
session.getCurrentSession();
    /** Starting the Transaction */
    Transaction tx = sess.beginTransaction();
    /** Creating POJO */
    Employee pojo = new Employee();
    pojo.setId(new Integer(5));
    pojo.setName(“XYZ”);
    /** Saving POJO */
    sess.save(pojo);
    /** Commiting the changes */
    tx.commit();
    System.out.println(“Record Inserted”);
    /** Closing Session */
    session.close();
  }

}

Output:

Record

Inserted.

This article tried to show the basic configurations
for the Hibernate annotations. The above
example will only add one record in the
Database using the hibernate annotations.

Hibernate with Annotation



   Jan-08   Java Jazz Up   39

Ant is a platform-independent build tool that
specially supports for the Java programming
language. It is written purely in Java. Ant is a
powerful technique that helps the developers
to convert their developmental structures in
deployment structures.

It allows the developer to automate the
repeated process involved in the development
of J2EE application. Developers can easily write
the script to automate the build process like
compilation, archiving and deployment.
A build process is an essential part of any
development cycle because it removes the gap
between the development, integration, and test
environments. It also helps to remove other
issues while deploying such as compilation,
classpath, or properties that cost many
projects time and money. Ant is a free tool
under the GNU License and is freely available
at http://jakarta.apache.org/ant/.

There are some useful commands described in
the table. These commands are built in the Ant
distribution.

Command Description

Ant Used to execute another ant
process from within the
current one.

Copydir Used to copy an entire
directory.

Copyfile Used to copy a single file.

Delete Deletes either a single file or all
files in a specified directory and
its sub-directories.

Deltree Deletes a directory with all its
files and subdirectories.

Get Gets a file from an URL.

Jar Jars a set of files.

Java Executes a Java class within
the running (Ant) VM or forks
another VM if specified.

Javac Compiles a source tree within
the running (Ant) VM.

Mkdir Makes a directory.

Property Sets a property (by name and
value), or set of properties
(from file or resource) in the
project.

Rmic Runs the rmic compiler for a
certain class.

Exec Executes a system command.
When the os attribute is
specified, then the command
isonly executed when Ant is
run on one of the specified
operating systems.

Ant Data Types

There are some data types used by the ant
tasks. These are described in a table given
below:

Data Types Description

Argument It passes command-line
arguments to programs that
you invoke from an Ant
buildfile.

Environment It specifies environment
variables to pass to an
external command or
program that you execute
from an Ant buildfile.

Filelist It defines a named list of files
that do not necessarily need
to actually exist.

Fileset It defines a named list of files
that must actually exist.

Patternset It groups a set of patterns
together.

Filterset It groups a set of filters
together.

Introduction to Ant



40    Java Jazz Up   Jan-08

Path It specifies paths (such as a
classpath) in a way that is portable
between operating systems.

Let’s develop a Build.xml :

In Ant, all the command line tasks used for
deploying an application are represented by
simple XML elements. It accepts instructions in
the form of XML documents thus it is extensible
and easy to maintain. The Ant installation
comes with a JAXP-Compliant XML parser, that
means the installation of an external XML
parser is not necessary.

In this section, a simple Ant example is shown
below which is followed by a set of instructions
that indicates how to use Ant.

Simple build process with Ant
(build.xml):

<?xml version=”1.0"?>
<project name=”antCompile”
default=”deploy” basedir=”.”>
<target name=”init”>
      <property name=”sourceDir”
value=”src”/ >
      <property name=” classDir “
value=”build” />
      <property name=”deployJSP” value=”/
web/deploy/jsp” />
   </target>

   <target name=”clean” depends=”init”>
      <deltree dir=”${ classDir }” />
   </target>
   <target name=”prepare” depends=”clean”>
      <mkdir dir=”${ classDir }” />
   </target>

   <target name=”compile”
depends=”prepare”>
     <javac srcdir=”${sourceDir}” destdir=”${
classDir }” />
   </target>

   <target name=”deploy”
depends=”compile,init”>

     <copydir src=”${jsp}”
dest=”${deployJSP}”/>
        </target>
</project>

Now, let’s understand one by one each tag of
this XML file.

1. <?xml version=”1.0"?>

Since Ant build files are XML files so the
document begins with an XML declaration that
specifies which version of XML is in use.

2. <project name=”antCompile”
default=”deploy” basedir=”.”>

The root element of an Ant build file is the
project element that contains information about
the overall project that is to be built. It has
three attributes.

• name: It defines the name of the project
that can be any combination of
alphanumeric characters that constitute
valid XML.

• default: It references the default target
that is to be executed, and when no target
is specified. Out of these three attributes
default is the only required attribute.

• basedir: It is treated as the base directory
from which the relative references
contained in the build file are retrieved.
Each project can have only one basedir
attribute.

3.  <target name=”init”>
              or
<target name=”clean” depends=”init”>

The target element is used as a wrapper for
sequences of actions. It contains four
attributes: name, if, unless, and depends. Ant
requires the name attribute, but the other three
attributes are optional.

name: The name of the target is used to
reference it from elsewhere, so that it can be

Introduction to Ant



   Jan-08   Java Jazz Up   41

referenced from elsewhere, either externally
from the command line, or internally via the
depends keyword, or through a direct call.

depends: depends contains the list of the
targets that must be executed prior to
executing this target. For example in the second
line, the clean task will not start until the init
task has completed.

if: This is a useful attribute which allows one to
add a conditional attribute to a target based
on the value of a property. The if will execute
when the property value is set.

unless: This is the converse of if. The targets’
contents will be executed if the value is not set
(to any value).

The init target from the simple example contains
three lines of property commands as shown
here:

<property name=”sourceDir” value=”src”/ >
<property name=” classDir “ value=”build” />
<property name=”deployJSP” value=”/
web/deploy/jsp” />

The property element allows the declaration
of commonly used directories or files that are
like user-definable variables available for use
within an Ant build file. The name attribute
specifies the name of the directory or file as a
logically and the value attribute specifies the
desired value of the property.

For example, in the markup shown above
“sourceDir” has been assigned the value “src”.

4. Then, you can have the reference of these
specified variables later in the Ant file to
obtain the value for these tags using ${dir
name}.
For example two other commands present in
the above buildfile are:

      <deltree dir=”${ classDir }” />
      <mkdir dir=”${ classDir }” />

The first command removes the entire tree
contained under the classDir. The second
command makes a directory again using the

mkdir element.

5. <target name=”compile”
depends=”prepare”>
<javac srcdir=”${sourceDir}” destdir=”${
classDir }”/>
</target>

This section of a build file covers the compilation
process. The javac element, as used above is
a command. It requires a source directory (the
input location of the .java files) and a destination
directory (the output location of the .classes
file). It is important to note that all directories
must either exist to run the ant command or
be created using the mkdir command. The
example above will compile all the .java files in
the directory specified by the src property and
placing the resultant .class files in the directory
specified by the build property.

6. <target name=”deploy”
depends=”compile,init”>
<copydir src=”${jsp}” dest=”${deployJSP}”/
>
</target>

Once the compile task has been complete, at
last the deploy task will perform the copy
operation to copy all JSP files from the source
directory to a deployment directory using the
copydir command.

Introduction to Ant



42    Java Jazz Up   Jan-08

Struts2 Data Tags

Apache Struts is an open-source framework
used to develop Java web applications. We
started introducing struts generic tags in the
November issue. In this section, we will continue
further with the data tags (generic tags)
provided with struts 2 framework and the rest
will be included in the subsequent issues of
the magazine.

Just download the zip file
“struts2datatags.zip” from any link given below
of each page of this article, unzip it and copy
this application to the webapps directory of
Tomcat. Start tomcat and write http://
localhost:8080/struts2datatags/index.jsp to
the address bar. You can examine the result of
each tag from this page.

1. Action Tag (Data Tag) Example

The action tag is a generic tag that is used to
call actions directly from a JSP page by specifying
the action name and an optional namespace.
The body content of the tag is used to render
the results from the Action. Any result
processor defined for this action in struts.xml
will be ignored, unless the executeResult
parameter is specified.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”actionTag”
class=”net.javajazzup.actionTag”>
<result name=”success”>/pages/dataTags/
success.jsp</result>
</action>

Create an action class as shown below:

actionTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;

public class actionTag extends ActionSupport
{

public String execute() throws Exception{
return SUCCESS;

}
}

Now create a jsp page using <s:action> tag
as  shown in the success.jsp page. The action
tag is used to call actions directly from a JSP
page by specifying the action name and an
optional namespace.

Struts2 Data Tags



   Jan-08   Java Jazz Up   43

success.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Action Tag Example</title>
</head>
<body>

<h2>Action Tag Example</h2>
<s:action name=”success”>

<b><i>
The action tag will execute the result and
include it in this page.</i></b></div>

</s:action>
</body>

</html>

Output of the success.jsp

2. Bean Tag (Data Tag) Example

The Bean tag is a generic tag that is used to
instantiate a class that confirms to the
JavaBeans specification. This tag has a body,
which can contain a number of Param elements
to set any mutator methods on that class. If
the id attribute is set on the BeanTag, it will
place the instantiated bean into the stack’s
Context.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”beanTag”
class=”net.javajazzup.beanTag”>

<result name=”success”>/pages/dataTags/
beanTag.jsp</result>
</action>

Create an action class as shown below:

beanTag.java
package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;

public class beanTag extends ActionSupport {
public String execute() throws Exception{

return SUCCESS;
}

}

Create a simple java bean as shown:

companyName.java

package net.javajazzup;

public class companyName {
private String name;

public void setName(String name){
this.name =name ;

}

public String getName(){
return name;

}
}

Now create a jsp page using <s:bean> and
<s:param> tags as shown in the beanTag.jsp
page. The bean tag instantiates the
“net.roseindia.companyName” class, it confirms
to the JavaBeans specification. The id attribute
is set on the BeanTag, it places the instantiated
bean into the stack’s Context. The body of
<s:bean> tag contains a param element
<s:param name=”name”>RoseIndia</
s:param> which is used to set the value for
the setName() method of the “companyName”
class and <s:property value=”%{name}” />
retrieves that value by calling the getName()
method.

Struts2 Data Tags



44    Java Jazz Up   Jan-08

beanTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Bean Tag Example</title>
</head>

<body>

Output of the beanTag.jsp

3. Date Tag (Data Tag) Example

The date tag allows formatting a Date in a quick
and easy way. User can specify a custom format
(eg. “dd/MM/yyyy hh:mm”), can generate easy
readable notations (like “in  hours, 14 minutes”),
or can just fall back on a predefined format
with key ‘struts.date.format’ in the properties
file. If that key is not defined, it will finally fall
back to the default DateFormat.MEDIUM
formatting.

Note: If the requested Date object isn’t found
on the stack, a blank will be returned.

Configurable attributes are:

   1. name
   2. nice
   3. format

Add the following code snippet into the
“struts.xml” file.

struts.xml

<action name=”dateTag”
class=”net.javajazzup.dateTag”>
<result>/pages/dataTags/dateTag.jsp
</result>
</action>

Create an action class as shown below:

dateTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class dateTag extends ActionSupport {
private Date currentDate;
public String execute() throws Exception{

setCurrentDate(new Date());
return SUCCESS;

}
public void setCurrentDate(Date date){

this.currentDate = date;
}
public Date getCurrentDate(){

return currentDate;
}

}

Now create a jsp page using  <s:date> tag as
shown in the success.jsp page.

The <s:date name=”currentDate” format=”dd/
MM/yyyy” /> date tag formats a Date in a quick
and easy way. Here the “format” parameter
specifies a custom format (eg. “dd/MM/yyyy
hh:mm”) to follow.

The nice parameter is of Boolean type, which
decides whether to print out the date nicely or
not. By Default it is kept false which prints out
date nicely i.e. <s:date name=”currentDate”
nice=”false” /> tag formats a date and similarly
<s:date name=”currentDate” nice=”true” />
does not format a date, it is illustrated in our
current jsp page.

Struts2 Data Tags



   Jan-08   Java Jazz Up   45

dateTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Date Tag Example</title>
</head>
<body>

<h2>Current Date Format</h2>
<table border=”1" width=”35%”>

<tr>
<td><b>Date Format</b></td>
<td><b>Date</b></td>

</tr>
<tr>

<td>Day/Month/Year</td>
<td><s:date name=”currentDate”

format=”dd/MM/yyyy” /></td>
</tr>
<tr>

<td>Month/Day/Year</td>
<td><s:date name=”currentDate”

format=”MM/dd/yyyy” /></td>
</tr>
<tr>

<td>Month/Day/Year</td>
<td><s:date name=”currentDate”

format=”MM/dd/yy” /></td>
</tr>
<tr>

<td>Month/Day/Year Hour<B>:</
B>Minute</td>

<td><s:date name=”currentDate”
format=”MM/dd/yy hh:mm” /></td>

</tr>
<tr>

<td>Month/Day/Year Hour<B>:</
B>Minute<B>:</B>Second</td>

<td><s:date name=”currentDate”
format=”MM/dd/yy hh:mm:ss” /></td>

</tr>
<tr>

<td>Nice Date (Current Date &
Time)</td>

<td><s:date name=”currentDate”
nice=”false” /></td>

</tr>
<tr>

<td>Nice Date</td>
<td><s:date name=”currentDate”

nice=”true” /></td>

</tr>
</table>

</body>
</html>

Output of the dateTag.jsp :

4. Include Tag (Data Tag) Example

The include tag is a generic tag that is used to
include a servlet’s output (result of servlet or a
JSP page) to the current page.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”includeTag”
class=”net.javajazzup.includeTag”>
<result>/pages/dataTags/includeTag.jsp
</result>
</action>

Struts2 Data Tags



46    Java Jazz Up   Jan-08

Create an action class as shown below:
includeTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class includeTag extends ActionSupport
{
private Date myBirthday;
public String execute() throws Exception{
setMyBirthday(new Date(“Jan 12, 1984
11:21:30 AM”));

return SUCCESS;
}
public void setMyBirthday(Date date){

this.myBirthday = date;
}
public Date getMyBirthday(){

return myBirthday;
}

}

Create a simple jsp (myBirthday.jsp) that we
want to include in our main jsp page ie.
includeTag.jsp.

myBirthday.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Include Tag Example</title>
</head>
<body>

<b>My Birth Day (Date Format)</b>
<table border=”1" width=”35%”>

<tr>
<td><b>Date Format</b></td>
<td><b>Date</b></td>

</tr>
<tr>

<td>Day/Month/Year</td>
<td><s:date name=”myBirthday”
format=”dd/MM/yyyy” /></td>

</tr>
<tr>

<td>Month/Day/Year</td>

<td><s:date name=”myBirthday”
format=”MM/dd/yyyy” /></td>

</tr>
<tr>

<td>Month/Day/Year</td>
<td><s:date name=”myBirthday”

format=”MM/dd/yy” /></td>
</tr>
<tr>

<td>Month/Day/Year Hour<B>:</
B>Minute</td>

<td><s:date name=”myBirthday”
format=”MM/dd/yy hh:mm” /></td>

</tr>
<tr>

<td>Month/Day/Year Hour<B>:</
B>Minute<B>:</B>Second</td>

<td><s:date name=”myBirthday”
format=”MM/dd/yy hh:mm:ss” /></td>

</tr>
<tr>

<td>Nice Date (Current Date &
Time)</td>

<td><s:date name=”myBirthday”
nice=”false” /></td>

</tr>
</table>

</body>
</html>

Now create a jsp page using <s:include> tag
as  shown in the includeTag.jsp page. The
<s:include value=”myBirthday.jsp” /> tag
includes another jsp using the value
parameter.

includeTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Include Tag Example</title>
</head>
<body>

<h2>Include Tag Example</h2>
<s:include value=”myBirthday.jsp” />

</body>
</html>

Struts2 Data Tags



   Jan-08   Java Jazz Up   47

Output of the includeTag.jsp:

5. Param Tag (Data Tag) Example

The param tag is a generic tag that is used to
parameterize other tags. For example the
include tag and bean tag. The parameters can
be added with or without a name as a key.

The param tag has the following two
parameters.

1. name (String) - the name of the
parameter

2. value (Object) - the value of the
parameter

Note: When you declare the param tag, the
value can be defined in either a value attribute
or as text between the start and end tag.
Struts behave a bit different according to these
two situations.

Case 1. <param name=”empname”>Amit
</param>  Here the value would be evaluated
to the stack as a java.lang.String object.

Case 2. <param name=”empname”
value=”Vinod”/> Here the value would be
evaluated to the stack as a java.lang.Object
object.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”paramTag”>
<result>/pages/dataTags/paramTag.jsp
</result>
</action>

Now create a jsp page to see the working
of the param tags.

paramTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Param Tag Example</title>
</head>
<body>

<h2>Param Tag Example</h2>
<ui:component>

<ui:param name=”empname”>Emp1</
ui:param><br>

<ui:param name=”empname”>Emp2</
ui:param><br>

<ui:param name=”empname”>Emp3</
ui:param>

</ui:component>
</body>

</html>

Struts2 Data Tags



48    Java Jazz Up   Jan-08

Output of paramTag.jsp:

6. Set Tag (Data Tag) Example

The set tag is a generic tag that is used to
assign a value to a variable in a specified scope.
It is useful when you wish to assign a variable
to a complex expression and then simply
reference that variable each time rather than
the complex expression.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”setTag”>
<result>/pages/dataTags/setTag.jsp</result>
</action>

Now create a jsp page using <s:set> tag as
shown in the setTag.jsp page. The set tag  is
used to assign a value to a variable in a
specified scope. The parameters name and
value in the tag
<s:set name=”technologyName”
value=”%{‘Java’}”/>
acts as the name-value pair. Here we set the
parameters as name=”technologyName”
value=”Java”.

setTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Set Tag Example</title>
</head>
<body>

<h2>Set Tag Example</h2>
<s:set name=”technologyName”

value=”%{‘Java’}”/>
Technology Name: <s:property

value=”#technologyName”/>
</body>

</html>

Output of the setTag.jsp:

7. Text Tag (Data Tag) Example

The text tag is a generic tag that is used to
render a I18n text message. Follow one of the
three steps:

1. Keep the message to be displayed in a
resource bundle with the same name as
the action that it is associated with ie.
Create a properties file in the same
package as your Java class with the same
name as your class, but with. properties
extension.

2. If the property file does-not work or the
message is not found in the resource

Struts2 Data Tags



   Jan-08   Java Jazz Up   49

bundle, then the body of the tag will be
used as default message.

3. If there is no body, then the name of the
message will be used.

Add the  following code snippet into the
struts.xml file.

struts.xml

<action name=”textTag”
class=”net.javajazzup.textTag”>

<result>/pages/dataTags/textTag.jsp</
result>
</action>

Create an action class as shown below:
textTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;

public class textTag extends ActionSupport {

  public String execute() throws Exception{
    return SUCCESS;
  }
}

Create a property file in the same package
where your Java program file (textTag.java) is
saved with the name as
package.properties.
package.properties

webname1 = http://www.javajazzup.com
webname2 = http://www.roseindia.net
webname3 = http://www.newstrackindia.com

Now create a jsp page to see the working of
the text tags.

The first three tags <s:text
name=”webname1">,<s:text
name=”webname2"> and <s:text
name=”webname3"> uses the
package.properties file to display the text
message.

Struts2 Data Tags

The next tag
<s:text name=”empname”>Vinod, Amit,
Sushil, .......</s:text> uses the body of the
tag as a default message.

The last tag <s:text name=”empname”>
</s:text> does not have access to the
package.properties files nor does it have a
body so it uses name of the message to
display.

textTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Text Tag Example</title>
</head>
<body>

<h2>Text Tag Example</h2>

<s:text name=”webname1"></s:text><br>
<s:text name=”webname2"></s:text><br>
<s:text name=”webname3"></s:text><br>
<s:text name=”empname”>Emp1,Emp2....
</s:text><br>
<s:text name=”empname”></s:text>
</body>
</html>

Output of the textTag.jsp:



50    Java Jazz Up   Jan-08

8. Property Tag (Data Tag) Example

The property tag is a generic tag that is used
to get the property of a value, which will default
to the top of the stack if none is specified.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”propertyTag”
class=”net.javajazzup.propertyTag”>
<result>/pages/dataTags/propertyTag.jsp
</result>
</action>

Create an action class as shown:

propertyTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;

public class propertyTag extends
ActionSupport {
  public String execute() throws Exception{
    return SUCCESS;
  }
}

Create a bean class “companyName” as
shown:

companyName.java

package net.javajazzup;

public class companyName {
private String name;

public void setName(String name){
this.name =name ;

}

public String getName(){
return name;

}
}

Create a jsp using the tags.

<s:property value=”%{name}” /> it prints
the result of myBean’s getMyBeanProperty()
method.

<s:property value=”name” default=”Default
Value” /> it prints the result of
companyName’s getName() method and if it
is null, print ‘a default value’ instead.

propertyTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>
<title>Property Tag Example</title>
</head>
<body>
<h2>Property Tag Example</h2>
<!— Example to pick the value through bean
class —>
<s:bean
name=”net.javajazzup.companyName”
id=”uid”>
<s:param name=”name”>JavaJazzUp</
s:param>
<s:property value=”%{name}” /><br>

</s:bean>
<!— Default value —>

<s:property value=”name”
default=”Default Value” />

</body>
</html>

Output of the propertyTag.jsp:

Struts2 Data Tags



   Jan-08   Java Jazz Up   51

Integrating JSF, Spring and Hibernate

Integrating JSF, Spring and Hibernate

This article explains integrating JSF (MyFaces),
Spring and Hibernate to build real world User
Login and Registration Application using
MySQL as database. This application lets the
new user create an account and existing user
access the application by user name and
password. These three frameworks can be
used for different purposes according to the
usefulness and power of individual
frameworks. Like,

1 JSF can be used to implement
presentation layer because it fits into
the MVC design pattern.

2 Spring Framework can be used in the
business logic tier to manage business
objects, resource management.

3 Hibernate can be powerful inside the
integration tier. Spring integrates
Hibernate very well.

Let’s see how these have been utilized to
develop our User Login and Registration
Application. Development of this application
has been divided in various steps to
understand it clearly.

1. About the Application
2. Application Architecture
3. Downloading MyFaces and creating web

application
4. Adding Spring and Hibernate Capabilities
5. Setting up MySql database and creating

tables
Developing Presentation Layer

6. Developing Login and Registration form
and backing beans

Developing Business Layer

7. Writing Business Objects

Integration Tier of the Application
8. Implementing Integration tier with
Hibernate

Wiring up everything

9. Integrating JSF, Spring and Hibernate
10. Integrating presentation layer
11. Integrating Business Logic/Integration
Tier
12. Downloading the full code of this
application

1. About the Application

a) User Login Module
In this module, the user is asked to fill its user
ID and password to proceed further in the
application.

If the user fills correct user name and password
then it welcomes the user and displays the page
like the following.



52    Java Jazz Up   Jan-08

If user doesn’t fill it correctly then it shows a
message indicating wrong entry.

If the user is not registered yet then there is
a link “New User?” to register such users.

b) User Registration Module:
In this module, the user is asked to fill the
required information like User Name, Password,
Email Address and Physical Address. User is
asked to reenter the password to confirm it. In
this form, all the fields have individual validation
checks so that the user should enter correct
entries. So for this we have taken care of some
points:

   1. Make the fields required to fill.
   2. Confirm password field.
   3. Check for matching the passwords.
   4. Email address validation to check the

  correct format of email address.
   5. Individual Messages for every field if

  there is any mismatch in the passed
  information.

The registration page can be seen below.

If the user fills any incorrect entry then
related message is shown for that particular
field, like below:

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   53

If the registration process completes
successfully then the screen below appears:

If the user is already registered with the site
then a message flashes as in the figure

below:

2. Application Architecture
Login and Registration application consists of
3 different layers (tiers):

   1. Presentation Layer
   2. Business Layer
   3. Data Access Layer

In this application the presentation layer,
business layer and data access layer are
physically located on the same JEE server.
Different layers of the application are isolated
from each other and connected through well-
defined interfaces.

Three tier architecture of the application:

Integrating JSF, Spring and Hibernate



54    Java Jazz Up   Jan-08

Presentation Layer

JSF is used to build the presentation layer of
the application. JFS allows us to create rich
GUI for web application. It resolves the
technical challenges of creating rich GUI web
application. In this layer we have JSP pages
consists of JSF components. All the requests
to the web server pass through FacesServlet.
Business Layer

The POJO classes and classes to process the
business logic are used to create the Business
Layer. The POJO classes, with the help of spring
framework, create an ideal solution to implement
the Business Layer.

Data Access Layer

The data access layer handles all the logic to
save and retrieve the data from database.
Hibernate O/R mapping tools is an ideal solution
for enterprise application of any size. Hibernate
handles all the logic to store and retrieve POJO
objects. It also handles resource management
and transaction management activities.

3. Downloading MyFaces and creating web
application

Downloading MyFaces

MyFaces can be configured using libraries and
configuration files which come with the
example applications. The latest version of
MyFaces can be downloaded from http://
myfaces.apache.org/download.html. We have
downloaded tomahawk-examples-1.1.6-
bin.zip from http://www.apache.org/dyn/
closer.cgi/myfaces/binaries/tomahawk-
examples-1.1.6-bin.zip for this example
tutorial. The downloaded file will be a zip file
named tomahawk-examples-1.1.6-bin.zip.
Extract the zip file and you will get 4 war files.
Copy myfaces-example-simple-1.1.6.war file
in the webapps directory of Tomcat which
will automatically be expanded in the directory
of same name. Now we will use the libraries
and configuration files from the exploded
application to create our web application.

Creating web application

Web application follows the start directory
structure as defined in the JEE (J2EE)
specification. Here we are creating the application
in the exploded format, you can also create
archive (war, ear) and then deploy on the
application server.

Following image shows the directory structure
of our web application.

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   55

Now follow the following steps to create the
application:
1. Create a directory with the name of your
application (HibernateMyFaces) under
webapps directory of tomcat.
2. Create “WEB-INF” directory inside it.
3. Create other directories as shown in the
above image.
4. Copy libraries files from “myfaces-
example-simple-1.1.6\WEB-INF\lib”
directory to “lib” directory.
5. Create web.xml file under WEB-INF
directory and add the following content.

<?xml version=”1.0"?>
<!DOCTYPE web-app PUBLIC  “-//Sun
Microsystems, Inc.//DTD Web Application 2.3/
/EN”  “http://java.sun.com/dtd/web-
app_2_3.dtd”>
<web-app>
<!— Spring context Configuration Begins—>
    <context-param>

<param-name>log4jConfigLocation</
param-name>

<param-value>/WEB-INF/log4j.properties</
param-value>

   </context-param>
<context-param>
   <param-name>contextConfigLocation</
param-name>
   <param-value>/WEB-INF/
applicationContext-hibernate.xml</param-
value>
</context-param>
<servlet>
   <servlet-name>context</servlet-name>
   <servlet-class>
         org.springframework.web.context.
ContextLoaderServlet
   </servlet-class>
   <load-on-startup>1</load-on-startup>
</servlet>
<!—End Spring configuration —>

<context-param>
    <param-name>
javax.faces.CONFIG_FILES</param-name>
    <param-value>/WEB-INF/faces-
config.xml</param-value>
</context-param>
<context-param>
     <param-
name>javax.faces.STATE_SAVING_METHOD</
param-name>
     <param-value>client</param-value>
</context-param>

<!— Extensions Filter —>
<filter>
      <filter-name>extensionsFilter</filter-
name>
      <filter-class>
 org.apache.myfaces.component.html.util.E
xtensionsFilter      </filter-class>

      <init-param>
            <param-name>uploadMaxFileSize</
param-name>
            <param-value>100m</param-value>
            <description>Set the size limit for
uploaded files.
                     Format: 10 - 10 bytes
                     10k - 10 KB
                     10m - 10 MB
                     1g - 1 GB
          </description>
      </init-param>
      <init-param>

Integrating JSF, Spring and Hibernate



56    Java Jazz Up   Jan-08

<param-name>uploadThresholdSize
</param-name>
           <param-value>100k</param-value>
          <description>Set the threshold size –
files below this limit are stored in memory,
files above this limit are stored on disk.
 Format: 10 - 10 bytes
                   10k - 10 KB
                   10m - 10 MB
                   1g - 1 GB
         </description>
    </init-param>
</filter>

<filter-mapping>
       <filter-name>extensionsFilter
</filter-name>
       <url-pattern>*.jsf</url-pattern>
</filter-mapping>
<filter-mapping>
       <filter-name>extensionsFilter</filter-
name>
       <url-pattern>/faces/*</url-pattern>
</filter-mapping>
<servlet>
        <servlet-name>Faces Servlet</servlet-
name>
        <servlet-
class>javax.faces.webapp.FacesServlet</
servlet-class>
        <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
        <servlet-name>Faces Servlet</servlet-
name>
        <url-pattern>*.jsf</url-pattern>
</servlet-mapping>
<welcome-file-list>
         <welcome-file>index.jsp</welcome-
file>
</welcome-file-list>
</web-app>

6. Now create faces-config.xml and add
the following code.

<?xml version=”1.0"?>
<!DOCTYPE faces-config PUBLIC  “-//Sun
Microsystems, Inc.//DTD JavaServer Faces
Config 1.0//EN”  “http://java.sun.com/dtd/
web-facesconfig_1_0.dtd” >

<faces-config>
   <application>
        <locale-config>
                <default-locale>en
</default-locale>
       </locale-config>
       <message-
bundle>net.roseindia.web.ui.messages
</message-bundle>
   </application>

   <managed-bean>
         <managed-bean-name>Bean
</managed-bean-name>
         <managed-bean-
class>net.roseindia.web.ui.Bean
</managed-bean-class>
         <managed-bean-scope>session
</managed-bean-scope>
   </managed-bean>

   <managed-bean>
         <managed-bean-name>CheckValidUser
</managed-bean-name>
         <managed-bean-class>
                     net.roseindia.web.ui.CheckValidUser
         </managed-bean-class>
         <managed-bean-scope>session
</managed-bean-scope>
   </managed-bean>

  <navigation-rule>
          <from-view-id>/pages/login.jsp
</from-view-id>
          <navigation-case>
                 <from-outcome>reg
</from-outcome>
                 <to-view-id>/pages/
registration.jsp</to-view-id>
           </navigation-case>
           <navigation-case>
<from-outcome>success</from-outcome>
                  <to-view-id>/pages/
successLogin.jsp</to-view-id>
           </navigation-case>
          <navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id>/pages/login.jsp</to-view-id>
          </navigation-case>
</navigation-rule>

<navigation-rule>

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   57

<from-view-id>/pages/registration.jsp</
from-view-id>
 <navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/pages/welcome.jsp
</to-view-id>
</navigation-case>
<navigation-case>
 <from-outcome>failure</from-outcome>
  <to-view-id>/pages/registration.jsp
</to-view-id>
 </navigation-case>
</navigation-rule>
</faces-config>

Note: In the next sections we will add the
configuration into web.xml and faces-
config.xml files, so the content will change.
We advice you to download the full code from
our site and then take the files from there.

7. Create “src” directory parallel to the “lib”
directory.

8. Create two directories “classes”, “java”
and “build.xml” file within “src” folder. Copy
the following content into build.xml file:

<project name=”MyFaces, Hibernate and
Spring Integration” basedir=”../”
default=”all”>
<!— Project settings —>
    <property name=”project.title”
value=”RoseIndia MyFaces, Hibernate and
Spring Integration Tutorial”/>
    <property name=”project.jar.file”
value=”roseindia.jar”/>

   <path id=”class.path”>
         <fileset dir=”lib”>
               <include name=”**/*.jar”/>
         </fileset>
         <fileset dir=”libext”>
               <include name=”**/*.jar”/>
         </fileset>
    </path>

<!— Classpath for Project —>
    <path id=”compile.classpath”>
         <pathelement path =”lib/myfaces-api-
1.1.5.jar”/>
         <pathelement path =”lib/myfaces-impl-

1.1.5.jar”/>
         <pathelement path =”lib/jstl-1.1.0.jar”/
>
         <pathelement path =”lib/tomahawk-
1.1.6.jar”/>
         <pathelement path =”libext/servlet-
api.jar”/>
         <pathelement path =”classes”/>
         <pathelement path =”${classpath}”/>
     </path>

           <!— Check timestamp on files —>
    <target name=”prepare”>
          <tstamp/>
    </target>

<!— Copy any resource or configuration
files —>
    <target name=”resources”>

<copy todir=”src/classes”
includeEmptyDirs=”no”>
 <fileset dir=”src/java”>
 <patternset>
 <include name=”**/*.conf”/>
 <include name=”**/*.properties”/>
  <include name=”**/*.xml”/>

</patternset>
                   </fileset>
           </copy>
    </target>
            <!— Normal build of application —>
    <target name=”compile”
depends=”prepare,resources”>
          <javac srcdir=”src” destdir=”src/
classes” debug=”true”
                         debuglevel=”lines,vars,source”>
                 <classpath refid=”class.path”/>
          </javac>
          <jar jarfile=”lib/${project.jar.file}”
basedir=”src/classes”/>
    </target>

<!— Remove classes directory for clean
build —>
    <target name=”clean”
description=”Prepare for clean build”>
           <delete dir=”classes”/>
           <mkdir  dir=”classes”/>
    </target>

<!— Build Javadoc documentation —>
    <target name=”javadoc”

Integrating JSF, Spring and Hibernate



58    Java Jazz Up   Jan-08

description=”Generate JavaDoc API docs”>
            <delete dir=”./doc/api”/>

<mkdir dir=”./doc/api”/>
<javadoc sourcepath=”./src/java” destdir=”./
doc/api”
  classpath=”${servlet.jar}:${jdbc20ext.jar}”
packagenames=”*”
author=”true” private=”true” version=”true”
  windowtitle=”${project.title} API
Documentation”
doctitle=”&lt;h1&gt;${project.title}
                 Documentation (Version
${project.version})&lt;/h1&gt;”
                 bottom=”Copyright &#169;
2002">
                     <classpath
refid=”compile.classpath”/>
             </javadoc>
     </target>

<!— Build entire project —>
     <target name=”project”
depends=”clean,prepare,compile”/>
            <!— Build project and create
distribution—>
     <target name=”all” depends=”project”/>
</project>

We will use ant tool to build the application,
so make sure ant tool is installed on your
development machine.
9. Create directory with name “net” in
“java” directory and directory of name
“roseindia” within “net” directory.

10. Create “classes” directory within
“WEB-INF” directory for the class file to be
used in the application.

4. Adding Spring and Hibernate
Capabilities

In this section, we will add Spring and Hibernate
capabilities to our web application. So for this,
we will have to add the spring and hibernate

libraries and configuration files to the web
application.

Steps to integrate:

Adding Servlets Library
Since we are using ant build tool to compile the
application, it is necessary to make servlets
api library available to ant build tool for compiling
the java code. We are adding Servlets library
to the project.
 1. Create a directory named libext under
WEB-INF directory of your application.

2. Copy servlet-api.jar from common\lib
directory of your Tomcat into libext
directory.

Adding Hibernate Libraries
Now we will download hibernate libraries and
add it to the project.

1. Download hibernate-3.2.4.sp1.zip or
latest version from http://
www.hibernate.org/6.html. We have
downloaded hibernate-3.2.4.sp1.zip for this
tutorial.

2. Unzip the file.

3. Copy all the jar files from hibernate-
3.2.4.sp1\hibernate-3.2\lib into lib
directory of your application. (The directories
hibernate-3.2.4.sp1\hibernate-3.2 may be
different in your case depending on the
downloaded version).

 4. Copy hibernate3.jar from hibernate-
3.2.4.sp1\hibernate-3.2 into lib directory of
your application.

Adding Spring Libraries
Our application uses spring to manage the
beans, so we have to add the spring
capabilities to the application.

1. Download spring-framework-2.0.5-
with-dependencies.zip from http://
www.springframework.org/download.

2. Extract the file.

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   59

3. Copy spring.jar from spring-framework-
2.0.5-with-dependencies\spring-framework-
2.0.5\dist directory into lib directory of your
application.

Now all the libraries are available with us in
our application, we will now create database
and tables in MySQL to use in our application.
5. Setup MySQL Database

In this section, we will create database and table
into MySQL database. Table created here will
be used in sample application.

Downloading and Installing MySQL

You can download MySQL from mysql.org.

Creating Database:
You can create mysql database by issuing the
following command:

Mysql>create database jsf_hibenate;

Creating Table:
To create table in this database you would have
to first select the database by use statement.

Mysql>use jsf_hibenate

Now, you can create table using the following
command:

mysql>create table users (
userId int(11) NOT NULL auto_increment,
userName varchar(20) default NULL,
userPassword varchar(11) default NULL,
userEmail varchar(30) default NULL,
userAddress varchar(30) default NULL,
PRIMARY KEY (userId)
) ;

6. User Login and Registration application

Creation of Pages:
This is the first page that appears to the user.
In this page user is asked to fill the user name
and password to login itself in the site. Both
the fields are required to fill. If the user leaves
it blank then the message indicating that these

can’t be left empty is shown.
Login Page:

login.jsp : The code for above page is given
below. For this page CheckValidUser
backing bean has been used. On the
submission of the page checkUser() method
of the bean is called to check the existence of
the user. If the user is registered then user is
welcomed to the next page otherwise a
message that either user name or password
is incorrect.

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>

<f:view>
<html>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<head>
<title>User Login</title>
<link href=”pages/mycss.css”
rel=”stylesheet” type=”text/css”/>
</head>
<body ><center>

<h:panelGrid width=”100%” columns=”1"

Integrating JSF, Spring and Hibernate



60    Java Jazz Up   Jan-08

border=”0"
       style=”padding-left:10px;  padding-
top:10px; “ styleClass=”top_bg”>
      <h:dataTable id=”dt1" border=”0"
cellpadding=”0" cellspacing=”0" var=”ab”>
          <h:column>
               <f:facet name=”header”>
                    <h:outputText
value=”RoseIndia” styleClass=”style4"/>
              </f:facet>
         </h:column>
      </h:dataTable>
</h:panelGrid>

<h:panelGrid width=”175px” columns=”3"
border=”0" cellspacing=”0" cellpadding=”0">
       <h:outputText value=” “/>
       <h:graphicImage id=”gi3"
value=”images/verticle_line.gif”
              width=”4"  height=”18"></
h:graphicImage>
       <h:panelGroup>
              <h:dataTable id=”dt2" border=”0"
cellpadding=”0"
                                   cellspacing=”0"
width=”250" var=”gh”>
                   <h:column>
                        <f:facet name=”header”>
                               <h:outputText
value=”User Login” styleClass=”style1"/>
                        </f:facet>
                  </h:column>
              </h:dataTable>
       </h:panelGroup>

       <h:graphicImage id=”gi4"
value=”images/horizontal_line.gif”
width=”25" height=”4" ></h:graphicImage>
       <h:graphicImage id=”gi8"
value=”images/horizontal_line.gif”
                           width=”5" height=”4" ></
h:graphicImage>
       <h:graphicImage id=”gi6"
value=”images/horizontal_line.gif”
 width=”260" height=”4" ></h:graphicImage>
       <h:outputText value=” “/>
       <h:graphicImage id=”gi7"
value=”images/verticle_line.gif”
width=”5" height=”100%” >
</h:graphicImage>
     <h:panelGroup>
             <h:form>

<h:panelGrid width=”75px” columns=”2"
border=”0">
<f:facet name=”header”>
  <h:outputText value=”User Name or
Password is incorrect”
style=”color:red; font-weight: bold;”
rendered=”#{CheckValidUser.exist}”/>
  </f:facet>
 <h:panelGroup>
  <h:outputText value=” “/>
 <h:outputText value=”User Name”
styleClass=”style2"/>
  </h:panelGroup>
 <h:panelGroup>
 <h:inputText id=”UserName”
value=”#{CheckValidUser.userName}”
size=”27" required=”true”/>
 <f:verbatim><br/></f:verbatim>
 <h:message for=”UserName”
styleClass=”errors”/>
</h:panelGroup>
 <h:panelGroup>
 <h:outputText value=”Password”
styleClass=”style2"/>
 </h:panelGroup> <h:panelGroup>
 <h:inputSecret id=”Password”
value=”#{CheckValidUser.pwd}”
 size=”27" required=”true”/>
<f:verbatim><br/></f:verbatim>
 <h:message for=”Password”
styleClass=”errors”/>
 </h:panelGroup>
  <h:outputText value=” “/>
  <h:panelGroup>
<h:commandButton image=”images/
submit_button.gif”
action=”#{CheckValidUser.checkUser}”/>
</h:panelGroup>
  </h:panelGrid>
 </h:form>
  <h:form>
 <h:commandLink value=”New User?”
action=”reg” styleClass=”style3"/>
          </h:form>
     </h:panelGroup>
</h:panelGrid>
</center>
</body>
</html>
</f:view>

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   61

Login Successful Page:
If the user enters correct information then
the user is presented with the next page as
in the figure below:

successLogin.jsp: This is the code for
above page. This is simple page in which only
welcome string is shown to the user.

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<f:view>
<html>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">
<head>
<title>Welcome</title>
<link href=”mycss.css” rel=”stylesheet”
type=”text/css”/>
</head>
<body ><center>
<h:form>
<h:panelGrid width=”100%” columns=”1"
border=”0" style=”padding-left:10px;
 padding-top:10px; “ styleClass=”top_bg”>
 <h:dataTable id=”dt1" border=”0"

cellpadding=”0" cellspacing=”0" var=”ab”>
 <h:column>
<f:facet name=”header”>
<h:outputText value=”RoseIndia”
styleClass=”style4"/>
</f:facet>
 </h:column>
</h:dataTable>
     </h:panelGrid>
      <h:panelGrid width=”100%” columns=”1"
border=”0" >
 <f:verbatim>&nbsp;</f:verbatim>
<h:outputText value=” “/><h:outputText
value=” “/><h:outputText value=” “/>
</h:panelGrid>
<h:outputText value=”Welcome .....”
style=”color:green; font-weight:bold”/>
</h:form>
</center>
</body>
</html>
</f:view>

Registration Page:
This page comes to the user if the user is not
registered with the site. The user clicks the
link named “New User?” and so registration
page is opened. The figure below is
registration page:

Integrating JSF, Spring and Hibernate



62    Java Jazz Up   Jan-08

registration.jsp : This is the code for above
page. The backing bean used for this page is
“Bean”. When the page is submitted then
register() method is called which checks the
user name entered by the user. If the name is
already registered then user is informed that
the user with name is already registered
otherwise a new user object is created and all
the fields related with the user is added in
that object i.e. user name, password, email,
address. Before checking the user existence
validateData() method is called to check all
the fields. If anything doesn’t match with the
requirement then the same page is again
presented to the user with the validation
messages. The messages can be customized
creating the MessageFactory class in which
messages from the resource bundle for the
specific locale are picked and shown in the
page. You can see the code for bean below in
the tutorial.

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<f:loadBundle
basename=”net.roseindia.web.ui.messages”
var=”message”/>
<f:view>
<html>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">

<head>
<title>Registration</title>
<link href=”mycss.css” rel=”stylesheet”
type=”text/css”/>
</head>
<body ><center>

<h:form id=”registerForm”>
      <h:panelGrid width=”100%” columns=”1"
border=”0" style=”padding-left:10px;
                           padding-top:10px; “
styleClass=”top_bg”>
              <h:dataTable id=”dt1" border=”0"
cellpadding=”0" cellspacing=”0" var=”ab”>
                      <h:column>
 <f:facet name=”header”>

 <h:outputText value=”RoseIndia”
styleClass=”style4"/>
                              </f:facet>
                      </h:column>
              </h:dataTable>
      </h:panelGrid>
      <h:panelGrid width=”175px”
columns=”3" border=”0" cellspacing=”0"
cellpadding=”0">
              <h:outputText value=” “/>
               <h:graphicImage id=”gi3"
value=”images/verticle_line.gif”
width=”4" height=”18"></h:graphicImage>
<h:panelGroup>
<h:dataTable id=”dt2" border=”0"
cellpadding=”0"  cellspacing=”0" width=”250"
var=”gh”>
  <h:column>
 <f:facet name=”header”>
 <h:outputText value=”User Registration “
styleClass=”style1"/>
   </f:facet>
    </h:column>
   </h:dataTable>
   </h:panelGroup>
<h:graphicImage id=”gi4" value=”images/
horizontal_line.gif”   width=”25" height=”4" >
</h:graphicImage>
 <h:graphicImage id=”gi8" value=”images/
horizontal_line.gif” width=”5" height=”4" ></
h:graphicImage>
<h:graphicImage id=”gi6" value=”images/
horizontal_line.gif” width=”260" height=”4" >
</h:graphicImage>
<h:outputText value=” “/>
<h:graphicImage id=”gi7" value=”images/
verticle_line.gif”   width=”5" height=”100%” >
</h:graphicImage>
 <h:panelGroup>
<h:dataTable id=”dt3" border=”0"
cellpadding=”0"   cellspacing=”0" width=”250"
var=”gh”>
 <h:column>
<f:facet name=”header”>
<h:outputText
value=”#{message.already_registered_msg}”
 style=”color:red; font-weight: bold;”
    rendered=”#{Bean.exist}”/>
  </f:facet>
                             </h:column>
                        </h:dataTable>
<h:panelGrid width=”100px” columns=”2"

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   63

border=”0" cellspacing=”2" cellpadding=”0">
 <h:outputText value=”User Name”
styleClass=”style2"/>
 <h:panelGroup>
<h:inputText id=”userName”
value=”#{Bean.userName}”
  required=”true” size=”27" />
  <f:verbatim><br/></f:verbatim>
   <h:message for=”userName”
styleClass=”errors”/>
</h:panelGroup>
<h:outputText value=”Password”
styleClass=”style2"/>
<h:panelGroup>
  <h:inputSecret id=”Password”
value=”#{Bean.pwd}”
 size=”27" redisplay=”true” required=”true”/>
 <f:verbatim><br/></f:verbatim>
   <h:message for=”Password”
styleClass=”errors” />
</h:panelGroup>
<h:outputText value=”Confirm Password”
styleClass=”style2"/>
<h:panelGroup>
  <h:inputSecret id=”confirmPassword”
value=”#{Bean.confPwd}” size=”27"
    redisplay=”true” required=”true”/>
 <f:verbatim><br/></f:verbatim>
 <h:message for=”confirmPassword”
styleClass=”errors” />
   </h:panelGroup>
 <h:outputText value=”Email”
styleClass=”style2"/>
   <h:panelGroup>
  <h:inputText id=”email”
value=”#{Bean.email}” size=”27"
 required=”true”/>
   <f:verbatim><br/></f:verbatim>
                                            <h:message
for=”email” styleClass=”errors” />
                                 </h:panelGroup>
                                 <h:outputText
value=”Address” styleClass=”style2"/>
                                 <h:panelGroup>
                                             <h:inputText
id=”address” value=”#{Bean.address}”
                                                               size=”27"
required=”true”/>
                                             <f:verbatim><br/
></f:verbatim>
                                             <h:message
for=”address” styleClass=”errors” />

                                 </h:panelGroup>
<h:outputText value=” “/>
                                 <h:commandButton
value=”sub” image=”images/
submit_button.gif”
  action=”#{Bean.register}”/>
                       </h:panelGrid>
               </h:panelGroup>
    </h:panelGrid>

</h:form>
</center>
</body>
</html>
</f:view>

Welcome page:
If the user enters the correct information in all
the fields then user is informed for the
successful registration in the next page.

welcome.jsp :
This is the code for the above page. This is
also a simple page in which only string for
successful registration has been shown.

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h”%>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f”%>
<%@ taglib uri=”http://myfaces.apache.org/
tomahawk” prefix=”t”%>
<f:view>
<html>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1">

<head>
<title>Welcome</title>

Integrating JSF, Spring and Hibernate



64    Java Jazz Up   Jan-08

<link href=”mycss.css” rel=”stylesheet”
type=”text/css”/>
</head>
<body ><center>

<h:form>
     <h:panelGrid width=”100%” columns=”1"
border=”0" style=”padding-left:10px;
                         padding-top:10px; “
styleClass=”top_bg”>
           <h:dataTable id=”dt1" border=”0"
cellpadding=”0" cellspacing=”0" var=”ab”>
                   <h:column>
                          <f:facet name=”header”>
                                   <h:outputText
value=”RoseIndia” styleClass=”style4"/>
                          </f:facet>
                   </h:column>
           </h:dataTable>
     </h:panelGrid>
     <h:panelGrid width=”100%” columns=”1"
border=”0" >
           <f:verbatim>&nbsp;</f:verbatim>
           <h:outputText value=” “/
><h:outputText value=” “/><h:outputText
value=” “/>
     </h:panelGrid>
      <h:outputText value=”Registration is
successful.” style=”color:green; font-
weight:bold”/>
</h:form>
</center>
</body>
</html>
</f:view>

Configuration Files :

Information about message bundle, backing
bean, navigation rules are to be specified in
the faces-config.xml file. This file has been
modified like below:

faces-config.xml :

<?xml version=”1.0"?>

<!DOCTYPE faces-config PUBLIC
“-//Sun Microsystems, Inc.//DTD JavaServer
Faces Config 1.0//EN”
“http://java.sun.com/dtd/web-
facesconfig_1_0.dtd” >

<faces-config>

<application>
     <locale-config>
          <default-locale>en</default-locale>
     </locale-config>
     <message-
bundle>net.roseindia.web.ui.messages</
message-bundle>
</application>

<managed-bean>
     <managed-bean-name>Bean</managed-
bean-name>
     <managed-bean-
class>net.roseindia.web.ui.Bean</managed-
bean-class>
     <managed-bean-scope>session</
managed-bean-scope>
</managed-bean>

<managed-bean>
     <managed-bean-name>CheckValidUser</
managed-bean-name>
     <managed-bean-
class>net.roseindia.web.ui.CheckValidUser
</managed-bean-class>
     <managed-bean-scope>session</
managed-bean-scope>
</managed-bean>

<navigation-rule>
    <from-view-id>/pages/login.jsp</from-
view-id>
    <navigation-case>
          <from-outcome>reg</from-
outcome>
          <to-view-id>/pages/registration.jsp</
to-view-id>
    </navigation-case>
    <navigation-case>
          <from-outcome>success</from-
outcome>
          <to-view-id>/pages/
successLogin.jsp</to-view-id>
    </navigation-case>
    <navigation-case>
          <from-outcome>failure</from-
outcome>
          <to-view-id>/pages/login.jsp</to-
view-id>

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   65

    </navigation-case>
</navigation-rule>

<navigation-rule>
    <from-view-id>/pages/registration.jsp</
from-view-id>
    <navigation-case>
           <from-outcome>success</from-
outcome>
           <to-view-id>/pages/welcome.jsp</
to-view-id>
    </navigation-case>
    <navigation-case>
           <from-outcome>failure</from-
outcome>
           <to-view-id>/pages/
registration.jsp</to-view-id>
    </navigation-case>
</navigation-rule>

</faces-config>

web.xml :

<?xml version=”1.0"?>
<!DOCTYPE web-app PUBLIC
”-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN”
”http://java.sun.com/dtd/web-
app_2_3.dtd”>

<web-app>
<!— Spring context Configuration Begins—>
<context-param>
    <param-name>log4jConfigLocation</
param-name>
    <param-value>/WEB-INF/
log4j.properties</param-value>
</context-param>

<context-param>
    <param-name>contextConfigLocation</
param-name>
    <param-value>/WEB-INF/
applicationContext-hibernate.xml</param-
value>
</context-param>

<servlet>
    <servlet-name>context</servlet-name>
    <servlet-class>

org.springframework.web.context.
ContextLoaderServlet
    </servlet-class>
    <load-on-startup>1</load-on-startup>
</servlet>
<!—End Spring configuration —>

<context-param>
    <param-
name>javax.faces.CONFIG_FILES</param-
name>
    <param-value>
                /WEB-INF/faces-config.xml
    </param-value>
</context-param>

<context-param>
    <param-
name>javax.faces.STATE_SAVING_METHOD</
param-name>
    <param-value>client</param-value>
</context-param>

<!— Extensions Filter —>
<filter>
   <filter-name>extensionsFilter</filter-name>
<filter-class>
org.apache.myfaces.component.html.util.
ExtensionsFilter</filter-class>
   <init-param>
        <param-name>uploadMaxFileSize</
param-name>
        <param-value>100m</param-value>
        <description>Set the size limit for
uploaded files.
              Format: 10 - 10 bytes
              10k - 10 KB
              10m - 10 MB
              1g - 1 GB
        </description>
   </init-param>
   <init-param>
        <param-name>uploadThresholdSize</
param-name>
        <param-value>100k</param-value>
<description>Set the threshold size - files
  below this limit are stored in memory, files
above
               this limit are stored on disk.
               Format: 10 - 10 bytes
              10k - 10 KB
              10m - 10 MB

Integrating JSF, Spring and Hibernate



66    Java Jazz Up   Jan-08

              1g - 1 GB
        </description>
    </init-param>
</filter>

<filter-mapping>
     <filter-name>extensionsFilter</filter-
name>
     <url-pattern>*.jsf</url-pattern>
</filter-mapping>
<filter-mapping>
     <filter-name>extensionsFilter</filter-
name>
     <url-pattern>/faces/*</url-pattern>
</filter-mapping>

<servlet>
      <servlet-name>Faces Servlet</servlet-
name>
      <servlet-
class>javax.faces.webapp.FacesServlet</
servlet-class>
      <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
    <servlet-name>Faces Servlet</servlet-
name>
    <url-pattern>*.jsf</url-pattern>
</servlet-mapping>
<welcome-file-list>
     <welcome-file>index.jsp</welcome-file>
</welcome-file-list>

</web-app>

Creation of Beans :

Bean.java : This bean has been used for
registration page. This bean has properties
related to all the fields in the page and setter
and getter method corresponding to all the
properties. exist property has been used to
set true or false value to the “rendered” attribute
of the outputText tag  responsible for presenting
the string “User is already registered”. If the
username is already present then the value for
exist property is set to “true”. dao object of
HibernateSpringDAO class is used to work with
the database.

package net.roseindia.web.ui;

import net.roseindia.web.common.*;

import net.roseindia.dao.*;

CheckValidUser.java
This bean has been used in the login page. All
the properties of the bean are related to the
fields of the login page. When the page is
submitted then checkUser() method is called
which checks the username and password. If
both are correct then the user is sent to the
next page which welcomes the user otherwise
message is displayed to the user in the same
login page. In this bean there is one exist
property which is set to true if username or
password doesn’t match with the database. So
this value is set to the “rendered” property of
the tag responsible for displaying the string
“User name or password is incorrect”.

package net.roseindia.web.ui;
import net.roseindia.web.common.*;

import net.roseindia.dao.*;

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;

public class CheckValidUser{
  String userName;
  String pwd;
  boolean exist;
      
  public void setUserName(String
userName){
    this.userName=userName;
  }
  public void setPwd(String pwd){
    this.pwd=pwd;
  }
  public void setExist(boolean exist){
    this.exist=exist;
  }

  public String getUserName(){
    return userName;
  }
  public String getPwd(){
    return pwd;
  }

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   67

  public boolean getExist(){
    return exist;
  }
public String checkUser() throws Exception
{
    String status = “failure”;
    
    HibernateSpringDAO dao =
(HibernateSpringDAO)
ServiceFinder.findBean(“SpringHibernateDao”);

    if(dao.validateUser
(getUserName(),getPwd())!=null){
      exist=false;
      status = “success”;
    }
    exist=true;
    return status;
      
}
}

MessageFactory.java :
This java code is used to get the message
from message bundle of specific locale. This
class has been used in the Bean class to set
the appropriate message for different fields
when the defined condition doesn’t meet.

package net.roseindia.web.ui;
import net.roseindia.web.common.*;

import java.util.*;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;

public class MessageFactory {
  ResourceBundle bundle;
  Locale locale;
  
  public MessageFactory() {
   locale =
FacesContext.getCurrentInstance().
getViewRoot().getLocale();
   bundle = ResourceBundle.getBundle
(“net.roseindia.web.ui.messages”, locale);
  }
  
  public String getMessage(String key) {
    return bundle.getString(key);
  }

  
}

Creation of Properties File :

This is the file containing the messages strings
that are to be shown in different pages.

# Registration Page
errorPasswordConfirm=Passwords are not
same.
errorUserId=User ID can not be less than 4
characters.
errorUserName=User Name can not be less
than 4 characters.
errorPasswordLength=Password can not be
less than 6 characters.
errorEmail=Invalid Email Address.
already_registered_msg=User is already
registered.

# Messages.properties file of JSF
javax.faces.component.UIInput.REQUIRED=Cannot
be blank
Creating CSS :

body{
background-color:#fff2f2;
margin-left:0;
margin-right:0;
margin-top:0;
margin-bottom:0;
}

.top_bg{
background-image:url(../images/TOP_BG.gif);
background-repeat:repeat-x;
}

.style1 {
font-family: Verdana, Arial, Helvetica, sans-
serif;
font-weight: bold;
font-size: 12px;
}
.style2 {
font-family: Verdana, Arial, Helvetica, sans-
serif;
font-size: 10px;
font-weight: bold;
}

Integrating JSF, Spring and Hibernate



68    Java Jazz Up   Jan-08

.style3 {font-size: 13px; font-family:
Verdana, Arial, Helvetica, sans-serif;}
.style4 {
font-family: Verdana, Arial, Helvetica, sans-
serif;
font-weight:bold;
color: #FF0000;
}
.errors {
font-style: italic;
color: green;
}

7. Business Objects of Business Logic tier
In this section we will develop the objects of
business logic tier. Business logic tier refers to
the mid tier of 3-tier web application architecture.

Business Objects

Business logic tier communicates both with user
interface tier and the database tier. In the
business logic tier all the logic are encapsulated.
The business objects and business services in
the application resides in the Business logic tier.
The business objects contain the data and logic
associated with the data. In our application there
is only one business object the User.

Here is the code of User.java business
object:

package net.roseindia.dao.hibernate;

import java.io.Serializable;

/** @author Hibernate CodeGenerator */
public class User implements Serializable {

    /** identifier field */
    private Integer userId;

    /** nullable persistent field */
    private String userName;

    /** nullable persistent field */
    private String userPassword;

    /** nullable persistent field */
    private String userEmail;

    /** nullable persistent field */
    private String userAddress;

    /** full constructor */
    public User(Integer userId, String
userName, String userPassword, String
userEmail,
            String userAddress) {
        this.userId = userId;
        this.userName = userName;
        this.userPassword = userPassword;
        this.userEmail = userEmail;
        this.userAddress = userAddress;
    }

    /** default constructor */
    public User() {
    }

    /** minimal constructor */
    public User(Integer userId) {
        this.userId = userId;
    }

    public Integer getUserId() {
        return this.userId;
    }

    public void setUserId(Integer userId) {
        this.userId = userId;
    }

    public String getUserName() {
        return this.userName;
    }

    public void setUserName(String
userName) {
        this.userName = userName;
    }

    public String getUserPassword() {
        return this.userPassword;
    }

    public void setUserPassword(String
userPassword) {
        this.userPassword = userPassword;
    }

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   69

    public String getUserEmail() {
        return this.userEmail;
    }

    public void setUserEmail(String userEmail)
{
        this.userEmail = userEmail;
    }

    public String getUserAddress() {
        return this.userAddress;
    }

    public void setUserAddress(String
userAddress) {
        this.userAddress = userAddress;
    }

}

Since we are using Hibernate for persistence,
the User business object provides getter and
setter methods for all fields.
Business Services

Business Services contains the code to interact
with the data tier. In this application we have
developed a formal service layer, client can use
these services interface. There is only one
service in this application the ServiceFinder.
The ServiceFinder service is used to get the
Spring managed beans from
WebApplicationContext.

In the next section we will learn about
Integration tier of our application. Integration
tier is also known as data access tier.

8. Implementing Data Access Layer with
Hibernate

In this application we are using Hibernate to
implement data access layer. Hibernate is an
open source O/R mapping framework that
handles all the persistence logic.

Hibernate supports all major database available
in the market. The Hibernate Query Language
is an object-oriented extension to SQL, which
can be extensively used to save and retrieve

the data in the form of Java objects from
database. Hibernate also supports association,
inheritance, polymorphism, composition and also
the Java Collection framework.

Data Access Object (DAO)
In this application we have used the DAO
pattern. The DAO pattern abstracts and
encapsulates all access to the data source. Our
application has one DAO interface:
HibernateSpringDAO. The implementation
classes of it is HibernateSpringDAOImpl that
contains Hibernate-specific logic to manage and
persist data.

Here is the code of
HibernateSpringDAO.java file:

import
org.springframework.dao.DataAccessException;
import net.roseindia.dao.hibernate.*;

public interface HibernateSpringDAO {

  /**
   * Retrieve all <code>true</code>/
<code>false</code> from the datastore.
   * @return a <code>true</code> or
<code>fasel</code>.
   */
  public User checkUser(String strUserName)
throws
DataAccessException,java.sql.SQLException;

  /**
   * Retrieve all <code>true</code>/
<code>false</code> from the datastore.
   * @return a <code>true</code> or
<code>fasel</code>.
   */
  public User validateUser(String
strUserName,String password) throws
      
DataAccessException,java.sql.SQLException;

  /**
   * Saves User object to the datastore.
   *
   */
  public void
addUser(net.roseindia.dao.hibernate.User
obj) throws DataAccessException;

Integrating JSF, Spring and Hibernate



70    Java Jazz Up   Jan-08

}

Here is the code of
HibernateSpringDAOImpl.java file that
actually implements the logic:

package net.roseindia.dao;

import java.util.*;
import
org.springframework.dao.DataAccessException;
import
org.springframework.orm.hibernate3.support.HibernateDaoSupport;
import org.hibernate.criterion.*;
//Java Imports
import java.sql.*;
import javax.servlet.http.HttpSession;
//Project Imports
import net.roseindia.dao.hibernate.*;

public class HibernateSpringDAOImpl
extends HibernateDaoSupport
    implements  HibernateSpringDAO {

  public User checkUser(String strUserName)
      throws DataAccessException,
java.sql.SQLException {
    User obj = null;
    DetachedCriteria criteria =
DetachedCriteria.forClass(User.class);
    criteria.add(Expression.eq(“userName”,
strUserName));

    List objs =
getHibernateTemplate().findByCriteria(criteria);
    if ((objs != null) && (objs.size() > 0)) {
      obj = (User) objs.get(0);
    }
    return obj;
  }  

  public User validateUser(String
strUserName,String password)
      throws DataAccessException,
java.sql.SQLException {
    User obj = null;
    DetachedCriteria criteria =
DetachedCriteria.forClass(User.class);
    criteria.add(Expression.eq(“userName”,
strUserName));

    criteria.add(Expression.eq(“userPassword”,
password));
    List objs =
getHibernateTemplate().findByCriteria(criteria);
    if ((objs != null) && (objs.size() > 0)) {
      obj = (User) objs.get(0);
    }
    return obj;
  }  

  public void
addUser(net.roseindia.dao.hibernate.User
obj)
      throws DataAccessException {
    getHibernateTemplate().save(obj);
  }
}
;

Database Design
Our application contains only one table whose
structure is as follows:

In the next section we will integrate all the
components.

9. Integrating JSF, Spring and Hibernate
In this section we will explain you the process
of Integrating Spring with JSF technology. This
section gives you a brief description about
Spring container (a WebApplicationContext),
which contains all the ‘business beans’ present
in the application.

Configuring Spring
context(WebApplicationContext)

What is WebApplicationContext?

The WebApplicationContext is an interface
that extends the ApplicationContext interface
in the Spring framework. This interface is used
to provide the configuration for a web application.
The WebApplicationContext is ready only
while application is running, it can even be
reloaded in runtime if the implementation

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   71

supports this.

Configuring WebApplicationContext

First of all it is necessary to configure the
WebApplicationContext as a
ContextListener in the web.xml file of the
web application. Following code shows the
configuration:

<listener>
<listener-class>
org.springframework.web.context.
ContextLoaderListener
</listener-class>
</listener>

In case you are using an older version of the
Servlet API (<2.3), you have to use Spring’s
ContextLoaderServlet in order to configure
WebApplicationContext. You can use the
following code in the web.xml file:

<servlet>
    <servlet-name>context</servlet-name>
      <servlet-class>
       org.springframework.web.
context.ContextLoaderServlet
    </servlet-class>
    <load-on-startup>1</load-on-startup>
</servlet>

The ContextLoaderListener uses the
configuration defined in applicationContext-
hibernate.xml file and creates the object of
WebApplicationContext for the application. The
path of applicationContext-hibernate.xml is
passed as <context-param>..</context-
param> property. Following code can be used
for this purpose:

<context-param>
     <param-name>contextConfigLocation</
param-name>
     <param-value>/WEB-INF/
applicationContext-hibernate.xml</param-
value>
</context-param>

When the application is started,

ContextLoaderListener loads the configuration
parameters from applicationContext-
hibernate.xml file and creates an object of
WebApplicationContext and stores it the
ServletContext of the web application.

Now our application can use the
WebApplicationContext to find the beans
present in it.

Getting the reference of Application context:

ApplicationContext appContext =
WebApplicationContextUtils.
getWebApplicationContext
(servletContext);

Getting the bean from the ApplicationContext

Object o =appContext.getBean(beanName);

Developing Service Finder

In our application we will use Service Finder
class to find the beans managed by Spring
framework. Here is the code of the Service
finder utility (ServiceFinder.java):

package  net.roseindia.web.common;
   
 
import javax.faces.context.FacesContext;
import javax.faces.context.ExternalContext;

import javax.servlet.ServletContext;

 import
org.springframework.context.ApplicationContext;
  
 import
org.springframework.web.context.support.
WebApplicationContextUtils;
  
 import java.util.Map;
  
 import javax.servlet.ServletRequest;
 import
javax.servlet.http.HttpServletRequest;
  
 public class ServiceFinder {

Integrating JSF, Spring and Hibernate



72    Java Jazz Up   Jan-08

public static Object findBean(String
beanName){
    FacesContext context=
FacesContext.getCurrentInstance();

    ServletContext servletContext =
        (ServletContext)context.getExternalContext().
getContext();
    ApplicationContext appContext =
        WebApplicationContextUtils.
getWebApplicationContext(servletContext);
Object o =appContext.getBean(beanName);
    return o;
  }
 }

The findBean() method of ServiceFinder class
is used to get the reference of in the backing
beans of JSF.

10. JSF, Integrating Presentation Layer
In this section we will learn about configuring
the presentation layer.

The presentation tier integration actually
involves the following steps:

1. Creating JSP pages
The JSP pages used in this application are
login.jsp, registration.jsp, successLogin.jsp and
welcome.jsp. These pages are already described
in the previous section Developing Login and
Registration form and backing beans.

2. Defining the page navigation rules
Following code present in the faces-config.xml
file defines the page navigation rule.

<navigation-rule>
    <from-view-id>/pages/login.jsp</from-
view-id>
    <navigation-case>
          <from-outcome>reg</from-outcome>
          <to-view-id>/pages/
registration.jsp</to-view-id>
    </navigation-case>
    <navigation-case>
          <from-outcome>success</from-
outcome>
          <to-view-id>/pages/

successLogin.jsp</to-view-id>
    </navigation-case>
    <navigation-case>
          <from-outcome>failure</from-
outcome>
          <to-view-id>/pages/login.jsp</to-
view-id>
    </navigation-case>
</navigation-rule>
<navigation-rule>
    <from-view-id>/pages/
registration.jsp</from-view-id>
    <navigation-case>
           <from-outcome>success</from-
outcome>
           <to-view-id>/pages/
welcome.jsp</to-view-id>
    </navigation-case>
    <navigation-case>
           <from-outcome>failure</from-
outcome>
           <to-view-id>/pages/
registration.jsp</to-view-id>
    </navigation-case>
</navigation-rule>

3. Developing and configuring backing
beans

In our application there are two backing beans
Bean and CheckValidUser.
Following code in the faces-config.xml file
declares the backing beans:

<application>
     <locale-config>
          <default-locale>en</default-locale>
     </locale-config>
     <message-
bundle>net.roseindia.web.ui.messages
</message-bundle>
</application>

<managed-bean>
     <managed-bean-name>Bean</managed-
bean-name>
     <managed-bean-
class>net.roseindia.web.ui.Bean
</managed-bean-class>
     <managed-bean-scope>session
</managed-bean-scope>
</managed-bean>

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   73

<managed-bean>
     <managed-bean-
name>CheckValidUser</managed-bean-
name>
     <managed-bean-
class>net.roseindia.web.ui.CheckValidUser</
managed-bean-class>
     <managed-bean-scope>session
</managed-bean-scope>
</managed-bean>

4. Integrating JSF with business logic tier

We are using ServiceFinder class to get the
Spring managed bean.

FacesContext context=
FacesContext.getCurrentInstance();

ServletContext servletContext =
(ServletContext)context.getExternalContext().
getContext();
ApplicationContext appContext =
WebApplicationContextUtils.
getWebApplicationContext(servletContext);

11. Integrating Business Logic Tier and
Integration Tier Components
In the business logic tier web have created
business objects, business services and now
we are going to integrate them using Spring
framework.

Business Objects

In this example we have only one business
object the User.

Integration tier components

Hibernate maps the business objects to
database using XML configuration file. Following
file (User.hbm.xml) is used to map User object
with the database.

<?xml version=”1.0" encoding=”UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC “-//
Hibernate/Hibernate Mapping DTD//EN”
”http://hibernate.sourceforge.net/hibernate-
mapping-3.0.dtd”>

<hibernate-mapping auto-import=”true”
default-lazy=”false”>

<class
name=”net.roseindia.dao.hibernate.User”
table=”users”>

<id
name=”userId”
type=”java.lang.Integer”
column=”userId”>
<generator class=”increment” />
</id>

<property
name=”userName”
type=”java.lang.String”
column=”userName”
length=”20"/>

<property
name=”userPassword”
type=”java.lang.String”
column=”userPassword”
length=”11"/>

<property
name=”userEmail”
type=”java.lang.String”
column=”userEmail”
length=”30" />

<property
name=”userAddress”
type=”java.lang.String”
column=”userAddress”
length=”30"/>

<!— Associations —>
</class>
</hibernate-mapping>

The HibernateSpringDAO is wired with
HibernateTemplate by Spring:

<bean id=”HibernateSpringDaoTarget”
class=”net.roseindia.dao.HibernateSpringDAOImpl”>
<property name=”sessionFactory”><ref
local=”sessionFactory”/></property>
</bean>

Integrating JSF, Spring and Hibernate



74    Java Jazz Up   Jan-08

Here is the full code of applicationContext-
hibernate.xml file

<?xml version=”1.0" encoding=”UTF-8"?>
<!DOCTYPE beans PUBLIC “-//SPRING//DTD
BEAN//EN” “http://
www.springframework.org/dtd/spring-
beans.dtd”>

<!—
- Application context definition for MyFaces,
Hibernate and Spring Integration application.
—>
<beans>

<!— =========================
RESOURCE DEFINITIONS
========================= —>

<!— Configurer that replaces ${...}
placeholders with values from a properties file
—>
<!— (in this case, JDBC-related settings for
the dataSource definition below) —>
<bean id=”propertyConfigurer”
class=”org.springframework.beans.factory.config.
PropertyPlaceholderConfigurer”>
<property name=”location”><value>/WEB-
INF/jdbc.properties</value></property>
</bean>

<!— Local DataSource that works in any
environment —>
<!— Note that DriverManagerDataSource
does not pool; it is not intended for
production —>

<bean id=”dataSource”
class=”org.springframework.jdbc.datasource.
DriverManagerDataSource”>
<property name=”driverClassName”>
<value>${jdbc.driverClassName}</value>
</property>
<property name=”url”><value>${jdbc.url}
</value></property>
<property
name=”username”><value>${jdbc.username}
</value></property>
<property
name=”password”><value>${jdbc.password}
</value></property>

</bean>

<!— JNDI DataSource for J2EE environments
—>
<!—
<bean id=”dataSource”
class=”org.springframework.jndi.
JndiObjectFactoryBean”>
<property
name=”jndiName”><value>java:comp/env/
jdbc/roseindiaDB_local</value></property>
</bean>
—>
<!— Hibernate SessionFactory —>
<bean id=”sessionFactory”
class=”org.springframework.orm.hibernate3.
LocalSessionFactoryBean”>
<property name=”dataSource”>
<ref local=”dataSource”/></property>
<property name=”mappingResources”>
<list>
<value>/net/roseindia/dao/hibernate/
User.hbm.xml</value>
</list>
</property>
<property name=”hibernateProperties”>
<props>
<prop key=”hibernate.dialect”>
${hibernate.dialect}
</prop>
<prop key=”hibernate.show_sql”>true
</prop>
</props>
</property>
</bean>

<!— Transaction manager for a single
Hibernate SessionFactory (alternative to JTA)
—>
<bean id=”transactionManager”
class=”org.springframework.orm.hibernate3.
HibernateTransactionManager”>
<property name=”sessionFactory”><ref
local=”sessionFactory”/></property>
</bean>

<!— =========================
BUSINESS OBJECT DEFINITIONS
========================= —>

<!—
Data access object: Hibernate

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   75

implementation.
—>

<bean id=”HibernateSpringDaoTarget”
class=”net.roseindia.dao.
HibernateSpringDAOImpl”>
<property name=”sessionFactory”><ref
local=”sessionFactory”/></property>
</bean>

<!—
- Transactional proxy for Application’s central
data access object.
-
- Defines specific transaction attributes with
“readOnly” markers,
- which is an optimization that is particularly
valuable with Hibernate(to suppress
unnecessary flush attempts for read-only
operations).
-Note that in a real-life app with multiple
transaction proxies,
-you will probably want to use parent and
child bean definitionsas described in the
manual, to reduce duplication.
—>

<bean id=”SpringHibernateDao”
class=”org.springframework.transaction.
interceptor.TransactionProxyFactoryBean”>
<property name=”transactionManager”>
<ref local=”transactionManager”/>
</property>
<property name=”target”><ref
local=”HibernateSpringDaoTarget”/>
</property>
<property name=”transactionAttributes”>
<props>
<prop
key=”get*”>PROPAGATION_REQUIRED,readOnly
</prop>
<prop key=”find*”>
PROPAGATION_REQUIRED,readOnly
</prop>
<prop key=”load*”>
PROPAGATION_REQUIRED,readOnly</prop>
<prop key=”store*”>
PROPAGATION_REQUIRED
</prop>
<prop key=”add*”>
PROPAGATION_REQUIRED
</prop>

</props>
</property>
</bean>

</beans>

This application is supported with full free code.
In the next section we will show you how you
can download and install it on your computer.

12. Download full code of JSF, Spring and
Hibernate based Registration program

From this page you can download the source
code of the application.

Downloading code

Download the code of the application.

Extracting and Installing the code on Tomcat
Extract the downloaded file and copy
HibernateMyfaces directory to tomcat
webapps directory. This will install application
on tomcat server.

Creating database
Follow the steps given in the previous section
and create database for testing the application.

Changing the database login information
Go to HibernateMyfaces\WEB-INF directory
and edit jdbc.properties to point to your
database.

Compile the application

To compile the program ant tool must be
installed on your system. Open console and go
to HibernateMyfaces\WEB-INF\src directory
and type ant command. This will compile your
program.

Running and testing the program

Start tomcat and type http://
localhost:8080/HibernateMyfaces/ . You
browser will display the login page as shown
below.

Integrating JSF, Spring and Hibernate



76    Java Jazz Up   Jan-08

Now you can test the application.

Congratulations you have successfully
developed application using JSF, Hibernate and
Spring frameworks.

Integrating JSF, Spring and Hibernate



   Jan-08   Java Jazz Up   77

Facelet is a view technology for Java Server
Faces (JSF) that allows building composite views
more quickly and easily than with JSP which is
the default view technology for JSF. JSP pages
are compiled into servlets but it’s not the case
with Facelets because Facelet pages are XML
compliant and its framework uses a fast SAX-
based compiler to build views. Facelets can make
changes to pages immediately so developing
JSF applications with Facelets is simply faster.
This section explains all facelet tags. Download
zip file from the link given below of the page
and run it. You will get the page given below
and can see the output of each tag clicking the
related link.

1.Facelet component tag

This tag is used to add a new component into
the JSF component tree as children of UI
component instance. This tag shows its
behavior like composition tag. The difference is
that the component tag inserts a new
UIcomponent instance in the component tree
and this instance is the root of all its child
components or fragments. The content outside
of the tag is ignored as it happens with
composition tag.

comptemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet component tag </title>
  </head>
  <body>

Content above component tag will not be
rendered.
    <ui:component >

<h2>Welcome........</h2>
    </ui:component >

Content below component tag will not be
rendered.
  </body>
</html>

Rendered Output:

Facelet



78    Java Jazz Up   Jan-08

2. Facelet composition tag

This is a templating tag and is used for the
wrapping the content that can be included in
any other facelet. This tag provides some useful
features. Any content outside of this tag is left
be rendered. You can include normal html
content in your page but Facelet will render only
content that is within this tag i.e. composition
tag. This tag takes one attribute named
“template”. This attribute is set to the path of
the template where the content of this tag will
be included.

In the code below we have taken template
attribute, which indicates the template to which
the content inside this composition tag will be
rendered. Content outside of the composition
tag will not be rendered. In the
comptemplate.xhtml we have used insert tag
to include the content inside the composition
tag to the comptemplate.xhtml page.

composition.xhtml:

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”>
 <body>

Content above composition tag will not be
rendered.
    <ui:composition template=”/pages/
composition/comptemplate.xhtml”>

<h2>Content to be included in the
comptemplate.xhtml page.</h2>
    </ui:composition>

Content below composition tag will not be
rendered.
 </body>
</html>

comptemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/

xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet composition tag example</
title>

<link href=”../../style/CSS.css”
rel=”stylesheet” type=”text/css”/>
  </head>
  <body>

<ui:insert />
  </body>
</html>

Rendered Output:

3. Facelet debug tag

This tag is useful in displaying the component
tree and scoped variables. This information will
be displayed in a popup window of browser
when we press Ctrl+Shift+(a key). This key
will be specified in hotkey attribute. For example,
in the code below in “debugtemplate.xhtml”,
this has been specified “p”. So when page
comes to the user then if Ctrl+Shift+p is
pressed, debug window is open which displays
the component tree and scoped variables.

debug.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/

Facelet



   Jan-08   Java Jazz Up   79

xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”
xmlns:h=”http://java.sun.com/jsf/html”>
 <body>

Content above composition tag will not be
rendered.
    <ui:composition template=”/pages/debug/
debugtemplate.xhtml”>

<ui:define name=”face1">
<h2>Java Jazz Up</h2>
<h3>Facelet Examples</h3>

</ui:define>
<ui:define name=”face2">Enter UserID

:<br/>
<h:inputText id=”it” /><br/><br/>

</ui:define>
<ui:define name=”face3">Enter Password

:<br/>
<h:inputSecret id=”is” /><br/><br/>

</ui:define>
<ui:define name=”face4">

<h:commandButton id=”cb”
value=”Submit” />

</ui:define>
    </ui:composition>

Content below composition tag will not be
rendered.
 </body>
</html>

debugtemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet debug tag example</title>
<link href=”../../style/CSS.css”

rel=”stylesheet” type=”text/css”/>
  </head>
  <body>

<ui:insert name=”face1"></ui:insert>
<ui:insert name=”face2"> </ui:insert>
<ui:insert name=”face3"> </ui:insert>
<ui:insert name=”face4"> </ui:insert>
<ui:debug hotkey=”p” rendered=”true”/>

  </body>
</html>

Rendered Output: This is the page that is
displayed to the user first. Now if we press
Ctrl+Shift+p then debug window is opened
that is shown in the second figure below:

Facelet



80    Java Jazz Up   Jan-08

Debug window:

4. Facelet decorate tag
This tag is like composition tag. Difference
between those is that the content outside of
the decorate tag is rendered while it is reverse
for composition tag i.e. it is not rendered when
we use composition tag. This tag is useful when
we want content with some decoration text in
the document.

decorate.xhtml:

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”
xmlns:h=”http://java.sun.com/jsf/html”>
 <body>

<h2>Java Jazz Up</h2>
<h3>Facelet Examples</h3>
<hr/>

    <ui:decorate template=”/pages/decorate/
decoratetemplate.xhtml”>

<ui:define name=”face1">
<table border=”1">
<tr><th>User</th>
<th>Email</th></tr>
<tr><td>ABC</td>

<td>abc@javajazzup.com</td></tr>
<tr><td>XYZ</td>
<td>xyz@javajazzup.com</td></tr>
</table><hr/>

</ui:define>
    </ui:decorate>

<h3>Content below decorate tag.</h3>
 </body>
</html>

decoratetemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet decorate tag example</title>
<link href=”../../style/CSS.css”

rel=”stylesheet” type=”text/css”/>
  </head>
  <body>

<ui:insert name=”face1"></ui:insert>
  </body>
</html>

Facelet



   Jan-08   Java Jazz Up   81

Rendered Output:

5. Facelet define tag
This tag is used to define the name of the
content. This named content can be included
within a template. This tag is used within those
tags that allows templating like composition and
decorate tags. This tag takes one attribute
named “name” that is required to be included
when using this define tag. This name attribute
is required to be same as name attribute of
insert tag in the target template to include the
content specified in define tag with the same
name. For example, in the first define tag name
attribute is set to  “face1”. Now look at the
code below in “definetemplate.xhtml” where we
have used insert tag with name attribute. This
name attribute is given value “face1”. So the
content within define tag, whose name attribute
value matches with the name attribute of the
insert tag i.e.”face1", will be included in the
“definetemplate.xhtml”.

define.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”
xmlns:h=”http://java.sun.com/jsf/html”>
 <body>

Content above composition tag will not be
rendered.
    <ui:composition template=”/pages/define/
definetemplate.xhtml”>

<ui:define name=”face1">
<h2>Java Jazz Up</h2>
<h3>Facelet Examples</h3>

</ui:define>
<ui:define name=”face2">Enter UserID

:<br/>
<h:inputText id=”it” /><br/><br/>

</ui:define>
<ui:define name=”face3">Enter Password

:<br/>
<h:inputSecret id=”is” /><br/><br/>

</ui:define>
<ui:define name=”face4">

<h:commandButton id=”cb”
value=”Submit” />

</ui:define>
    </ui:composition>

Content below composition tag will not be
rendered.
 </body>
</html>

definetemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet define tag example</title>
<link href=”../../style/CSS.css”

rel=”stylesheet” type=”text/css”/>

Facelet



82    Java Jazz Up   Jan-08

  </head>
  <body>

<ui:insert name=”face1"> </ui:insert>
<ui:insert name=”face2"> </ui:insert>
<ui:insert name=”face3"> </ui:insert>
<ui:insert name=”face4"> </ui:insert>

  </body>
</html>

Rendered Output:

6. Facelet fragment tag
This tag is used to insert the new
UIcomponent to the component tree and the
content outside of the tag is included to the
tree. So this tag is same with component tag
as decorate tag is with composition tag i.e. as
decorate tag behaves same as composition
tag except including content outside the tag,
in the same way fragment tag behaves same
as component tag except including content

outside the tag. In this example, the content
within fragment tag in included in component
tree and the code above fragment tag is also
rendered. So “Content above fragment tag
will be rendered.” and  “Content below
fragment tag will be rendered.” is rendered.

fragmenttemplate.xhtml

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet fragment tag example</title>
  </head>
  <body>

<h3>Content above fragment tag will be
rendered.</h3>
    <ui:fragment >

<h4>This is the content to be included in
the page.</h4>
    </ui:fragment >

<h3>Content below fragment tag will be
rendered.</h3>
  </body>
</html>

Rendered Output:

Facelet



   Jan-08   Java Jazz Up   83

7. Facelet include tag
This tag is used to include the content of a
page. This page name is specified by src
attribute of include tag. The page that has
been included should use composition tag or
component tag. It may contain xhtml or xml
to be included. In the program below, we
have used include tag and src attribute is set
to “includepage.xhtml”. So the content of this
page will be included in the “include.xhtml”
page and rendered in  “includetemplate.xhtml”
because insert tag with name attribute set to
face5 is used in “includetemplate.xhtml”.

include.xhtml:

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”
xmlns:h=”http://java.sun.com/jsf/html”>
 <body>

Content above composition tag will not be
rendered.
    <ui:composition template=”/pages/include/
includetemplate.xhtml”>

<ui:define name=”face1">
<h2>Java Jazz Up</h2>
<h3>Facelet Examples</h3>

</ui:define>
<ui:define name=”face2">Enter UserID

:<br/>
<h:inputText id=”it” /><br/><br/>

</ui:define>
<ui:define name=”face3">Enter Password

:<br/>
<h:inputSecret id=”is” /><br/><br/>

</ui:define>
<ui:define name=”face4">

<h:commandButton id=”cb”
value=”Submit” />

</ui:define>
<ui:define name=”face5">

<ui:include src=”includepage.xhtml”/>
</ui:define>

    </ui:composition>
Content below composition tag will not be

rendered.
 </body>
</html>

 includetemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet include tag example</title>
<link href=”../../style/CSS.css”

rel=”stylesheet” type=”text/css”/>
  </head>
  <body>

<ui:insert name=”face1"></ui:insert>

Facelet



84    Java Jazz Up   Jan-08

<ui:insert name=”face2"> </ui:insert>
<ui:insert name=”face3"> </ui:insert>
<ui:insert name=”face4"> </ui:insert>
<ui:insert name=”face5"></ui:insert>

  </body>
</html>

includepage.xhtml :
The content in this page will be included in the
“includetemplate.xhtml”.

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>

    <ui:composition>
<br/><br/>This is the content of

<b>”includepage.xhtml”</b>
    </ui:composition>

</html>

Rendered Output:

8. Facelet insert tag
This tag is used to replace the content defined
in another facelet to the template. This tag takes
one attribute that is not a required attribute
and is used in conjunction with define tag. If
you set this attribute same as defined in define
tag then that content within define tag will be
included. If it doesn’t match then the content
specified within opening and closing tag of this
insert tag will be displayed. For example, in the
code below in “insert.xhtml” there is not any
define tag whose name attribute value is “face5”
and this value is used in the second file
“inserttemplate.xhtml”. So the content (“This
is the default text rendered”) specified within
opening and closing tag of insert tag is
displayed. While there is one insert tag whose
value of name attribute (“face1”) matches with
that of define tag, so the content “ Java Jazz
Up “ and “ Facelet Examples” will be replaced to
the insert tag.

insert.xhtml:

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”
xmlns:h=”http://java.sun.com/jsf/html”>
 <body>

Content above composition tag will not be
rendered.
    <ui:composition template=”/pages/insert/
inserttemplate.xhtml”>

<ui:define name=”face1">
<h2>Java Jazz Up</h2>
<h3>Facelet Examples</h3>

</ui:define>
<ui:define name=”face2">Enter UserID

:<br/>
<h:inputText id=”it” /><br/><br/>

</ui:define>
<ui:define name=”face3">Enter Password

:<br/>
<h:inputSecret id=”is” /><br/><br/>

</ui:define>
<ui:define name=”face4">

<h:commandButton id=”cb”
value=”Submit” />

Facelet



   Jan-08   Java Jazz Up   85

</ui:define>
    </ui:composition>

Content below composition tag will not be
rendered.
 </body>
</html>

inserttemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet insert tag example</title>
<link href=”../../style/CSS.css”

rel=”stylesheet” type=”text/css”/>
  </head>
  <body>

<ui:insert name=”face1"></ui:insert>
<ui:insert name=”face2"> </ui:insert>
<ui:insert name=”face3"> </ui:insert>
<ui:insert name=”face4"> </ui:insert>
<ui:insert name=”face5"><h3>This is the

default text rendered</h3> </ui:insert>
  </body>
</html>

Rendered Output:

9. Facelet param tag
This tag is used to pass objects as variables
between facelets. This tag has two required
attributes name and value. name attribute is
the name of the variable and the value attribute
is to set the value of this variable. You can use
this tag where a define tag is used within
composition or decorate tag. We can also use
this tag within include tag.  In this example, we
have taken two variables user and pwd within
include tag in param.xhtml and values are set
through bean’s properties userid and password.
These variable are passed to the
“includeparampage.xhtml” where we can use
these variables in this line of code “Your #{user}
and #{pwd} will not be disclosed”.

Facelet



86    Java Jazz Up   Jan-08

param.xhtml:

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”
xmlns:h=”http://java.sun.com/jsf/html”>
 <body>

Content above composition tag will not be
rendered.
    <ui:composition template=”/pages/param/
paramtemplate.xhtml”>

<ui:define name=”face1">
<h2>Java Jazz Up</h2>
<h3>Facelet Examples</h3>

</ui:define>
<ui:define name=”face2">Enter UserID

:<br/>
<h:inputText id=”it” /><br/><br/>

</ui:define>
<ui:define name=”face3">Enter Password

:<br/>
<h:inputSecret id=”is” /><br/><br/>

</ui:define>
<ui:define name=”face4">

<h:commandButton id=”cb”
value=”Submit” />

</ui:define>
<ui:define name=”face5">

<ui:include
src=”includeparampage.xhtml”>

<ui:param name=”user”
value=”#{MessageBean.userid}”/>

<ui:param name=”pwd”
value=”#{MessageBean.password}”/>

</ui:include>

</ui:define>
    </ui:composition>

Content below composition tag will not be
rendered.
 </body>
</html>

paramtemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet param tag example</title>
<link href=”../../style/CSS.css”

rel=”stylesheet” type=”text/css”/>
  </head>
  <body>

<ui:insert name=”face1"></ui:insert>
<ui:insert name=”face2"> </ui:insert>
<ui:insert name=”face3"> </ui:insert>
<ui:insert name=”face4"> </ui:insert>
<ui:insert name=”face5"></ui:insert>

  </body>
</html>

includeparampage.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>

    <ui:composition>
<br/><br/><h3>Your #{user} and

#{pwd} will not be disclosed.</h3>
    </ui:composition>

</html>

Facelet



   Jan-08   Java Jazz Up   87

Rendered Output:

10. Facelet remove tag
This tag is used to remove content within this
tag  from a facelet at compile time. This tag
don’t have any attribute. This tag can be used
with jsfc attribute which shows that the
particular tag will be removed. In this example,
the line “This line will be removed” will be
removed from facelet at the time of compilation
and so will not be displayed. In this example,
the line where jsfc attribute is used and set to
the ui:remove  is not considered for compilation
so input text box for this line of code will not
be displayed.

remove.xhtml:

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”
xmlns:h=”http://java.sun.com/jsf/html”>
 <body>

<h2>Java Jazz Up</h2>
<h3>Facelet Examples</h3>
<hr/>

    <ui:decorate template=”/pages/remove/
removetemplate.xhtml”>

<ui:define name=”face1">
<h3><h:outputText value=”This is the

text to be displayed.”/></h3>
<input type=”text” jsfc=”h:inputText”

value=”This i/p box is rendered” />
<input type=”text” jsfc=”ui:remove”

value=”IT” />
<ui:remove>This line will be removed</

ui:remove>
</ui:define>

    </ui:decorate>
<hr/><h3>This is the content below

decorate tag.</h3>
 </body>
</html>

removetemplate.xhtml

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet remove tag example</title>
<link href=”../../style/CSS.css”

rel=”stylesheet” type=”text/css”/>
  </head>
  <body>

<ui:insert name=”face1"></ui:insert>
  </body>
</html>

Facelet



88    Java Jazz Up   Jan-08

Rendered Output:

11. Facelet repeat tag:

This tag is used to iterate over the list of items.
The name of list of items is specified by the EL
expression in the value attribute of this tag.
This tag contains two attributes “value” “name”.
The literal name specified in the name attribute
is used to iterate over the items. In this example,
we have used a bean named  “TableBean” and
info name is given to be used further. For ex.,
info.id, info.name used in value attribute of
inputText JSF tag where id and name are
attributes specified in bean. so here all  id and
names will be displayed.

repeat.xhtml:

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
xhtml”
xmlns:ui=”http://java.sun.com/jsf/facelets”
xmlns:h=”http://java.sun.com/jsf/html”>
 <body>

<h2>Java Jazz Up</h2>
<h3>Facelet Examples</h3>
<hr/>

    <ui:decorate template=”/pages/repeat/
repeattemplate.xhtml”>

<ui:define name=”face1">
<h3><h:outputText value=”This is the list

of ID and Names.”/></h3>
<ui:repeat

value=”#{TableBean.perInfoAll}” var=”info”>
   <li>

<h:inputText value=”#{info.id}” />
<h:inputText value=”#{info.name}” />

   </li>
</ui:repeat>

</ui:define>
    </ui:decorate>
 </body>
</html>

 repeattemplate.xhtml :

<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/
xhtml”
      xmlns:ui=”http://java.sun.com/jsf/
facelets”>
  <head>

<title>Facelet repeat tag example</title>
<link href=”../../style/CSS.css”

rel=”stylesheet” type=”text/css”/>
  </head>
  <body>

<ui:insert name=”face1"></ui:insert>
  </body>
</html>

TableBean.java :(Java Bean used for collection
of items)

package javajazzup;
public class TableBean {
    private perInfo[] perInfoAll = new
perInfo[]{

Facelet



   Jan-08   Java Jazz Up   89

            new perInfo(101, “Emp1”,
“9891444444”,  “aaa”, 11111),
            new perInfo(102, “Emp2”,
“9911666666”, “bbb” ,22222),
            new perInfo(103, “Emp3”,
“9313888888”, “ccc”, 33333)
    };
    public perInfo[] getperInfoAll() {
        return perInfoAll;
    }

public class perInfo {
        int id;

String name;
String phone;
String city;
int pin;

   public perInfo(int id, String name, String
phone, String city, int pin) {
            this.id = id;
            this.name = name;
            this.phone = phone;
            this.city = city;
            this.pin= pin;
        }
  public int getid() {
            return id;
        }
  public String getname() {
            return name;
        }
  public String getphone() {
            return phone;
        }
  public String getcity() {
            return city;
        }
  public int getpin() {
            return pin;
        }
    }
}

Rendered Output:

Facelet



90    Java Jazz Up   Jan-08

Behavioral Patterns Behavioral patterns are
those patterns, which are specifically concerned
with communication (interaction) between the
objects. The interactions between the objects
should be such that they are talking to each
other and are still loosely coupled. The loose
coupling is the key to n-tier architectures. In
this, the implementations and the client should
be loosely coupled in order to avoid hard coding
and dependencies. The behavioral patterns are:

1. Chain of Responsibility Pattern
2. Command Pattern
3. Interpreter Pattern
4. Iterator Pattern
5. Mediator Pattern
6. Momento Pattern
7. Observer Pattern
8. State Pattern
9. Strategy Pattern
10. Template Pattern
11. Visitor Pattern

In this Issue, we are going to discuss only the
Iterator, Mediator, and the Memento design
patterns.

Iterator Pattern

Iterator pattern is the mechanism of accessing
all the objects in a collection. To sequentially
access the objects of a collection, the iterator
pattern defines an interface containing the
methods that access the objects of a collection
or the aggregate objects without having
knowledge about its internal representation. It
provides uniform interface to traverse collections
of all kinds.

Aggregate objects are the objects containing
the group of objects as a unit. We can also
referred them as container or collection. Hash
table and linked list are the examples of
aggregate objects.

Example: Lets take an example of employees
of a software company and their section, then
we add some enumeration capabilities to the
Employee class. This class is the collection of
employees having their names; employee id and
their department and these employees are

stored in a Vector.

Now we simply the enumeration of the Vector
itself just to obtain the enumeration of all the
employees of the collection.

Filtered Enumeration: Suppose we want the
employees of the development section. This
requires a special enumeration class that access
the employees belong only to the development
department. The element() method we have
defined provides filtered access. Now
Enumeration that only returns employees
related to the development section is required.

Person.java

import java.util.*;
interface Person {
public abstract double income();
}

Teacher.java

class Teacher implements Person {
private double MonthlyIncome;
private String name;
public Teacher(String name, double i) {
this.name = name;
setMonthlyIncome(i);
}

void setMonthlyIncome(double i) {
if (i > 0) {
MonthlyIncome = i;
} else
MonthlyIncome = 0;
}

public double income() {
return MonthlyIncome;
}
public String getName() {
return name;
}
public String toString() {
return “Teacher: “ + getName();
}
}

Design Patterns



   Jan-08   Java Jazz Up   91

Doctor.java

class Doctor implements Person {
private double feeperPatient;
private int NoOfPatient;
private String name;
public Doctor(String name, double f, int n) {
this.name = name;
setFeeperPatient(f);
setNoOfPatient(n);
}

void setFeeperPatient(double f) {
if (f > 0)
feeperPatient = f;
else
feeperPatient = 0;
}

void setNoOfPatient(int n) {
if ( n > 0)
NoOfPatient = n;
else
NoOfPatient = 0;
}
public String getName() {
return name;
}
public double income() {
return NoOfPatient * feeperPatient;
}

public String toString() {
return “Doctor : “ + getName();
}
}

PersonTest.java

import java.util.Iterator;
import java.util.ArrayList;
import java.util.List;

class PersonTest {
public static void main(String[] args) {
List list = new ArrayList();
list.add(new Teacher(“Bill”, 800.00));
list.add(new Doctor(“Al”, 2.5, 200));
list.add(new Teacher(“Peter”, 1200.00));
list.add(new Doctor(“Mark”, 4.5, 333));

System.out.println(“Use built-in iterator:”);
Iterator iterator = list.iterator();
while(iterator.hasNext()) {
Person pr = (Person)iterator.next();
if (pr instanceof Teacher) {
System.out.print(“Teacher has “ + pr + “
income $”);
System.out.println(pr.income());

}
}
}
}

The above example also shows a dynamic
binding feature, which is popular in Object-
Oriented realm.

If you want to pick up a specific object from
the aggregated list, you may use the following
code.

II. Mediator Pattern

Mediator pattern takes an object that puts the
logic to manages state changes of other objects
rather than distributing the logic among the
various objects that results in decreasing the
coupling between the other objects.

Define an object that encapsulates how a set
of objects interacts. Mediator promotes loose
coupling by keeping objects from referring to
each other explicitly, and lets you vary their
interaction independently.

Lets try to under stand more clearly, When we
starts developing an application that have few
classes and these classes interact with each
other just to produce a result. As soon as the
application becomes large then the logic
becomes more complex and functionality
increases. In such condition it is difficult to
maintain this code then Mediator pattern solves
the problem by maintaining the code. It loose-
couples to the classes so that only one class
(Mediator) has the information about rest of
the classes, rest of the classes only interacts
with the Mediator.

Design Patterns



92    Java Jazz Up   Jan-08

Mediator.java

import java.io.*;

abstract class Mediator{
public abstract void pilotChanged(Pilot
theChangedPilot);

public static void main(String args[]){

ConcreteMediator aConcreteMediator = new
ConcreteMediator();
aConcreteMediator.createConcreteMediator();
(aConcreteMediator.getOnePilot()).Show();
(aConcreteMediator.getNextPilot()).Show();
OnePilot newPilot = new
OnePilot(aConcreteMediator, “OnePilot”);
aConcreteMediator.pilotChanged(
(OnePilot)newPilot );
(aConcreteMediator.getOnePilot()).Show();
(aConcreteMediator.getNextPilot()).Show();
}
}

Pilot.java

abstract class Pilot{

private Mediator mediator;

public Pilot(Mediator m){
mediator = m;
}

public void changed(){
mediator.pilotChanged(this);
}

public Mediator getMediator(){
return(mediator);
}
public abstract void Show();
}

ConcreteMediator.java

class ConcreteMediator extends Mediator{

private OnePilot aOnePilot;
private NextPilot aNextPilot;

public void pilotChanged( Pilot

theChangedPilot ){

if (((
OnePilot)theChangedPilot).getSelection().equals(
aOnePilot.getSelection() ) ){
aNextPilot.setText( aOnePilot.getSelection() );
}
}

public void createConcreteMediator(){
aOnePilot = new OnePilot(this, “OnePilot”);
aNextPilot = new NextPilot(this, “NextPilot”);
}

public OnePilot getOnePilot(){
return(aOnePilot);
}

public NextPilot getNextPilot(){
return(aNextPilot);
}
}

OnePilot.java

class OnePilot extends Pilot{

private String text;
public OnePilot(Mediator m, String s){

super( m );
text = s;
}

public void setText(String txt){
text = txt;
}

public String getSelection(){
return(text);
}

public void Show(){
System.out.println(“OnePilot = “ + text);
}
}

NextPilot.java

Design Patterns



   Jan-08   Java Jazz Up   93

class NextPilot extends Pilot{

private String text;
public NextPilot(Mediator m, String s){

super( m );
text = s;
}

public void setText(String txt){
text = txt;
}

public String getSelection(){
return( text );
}

public void Show(){
System.out.println(“NextPilot = “ + text);
}
}

III. Memento

The memento design pattern is that pattern in
which one object stores the previous state
(undo via rollback) of another object. This
pattern operates on a single object.

The objects originator and the caretaker use
this design pattern. The object originator
maintains the original state while the object
caretaker assist to the originator. First the
caretaker object asked to the originator for the
memento object then it does the operation (or
sequence of operations) it is going to do. It
returns the memento object to the originator
to roll back the state before the operations. Be
careful while using this pattern, as the originator
may change other objects or resources.

To develop a memento featured program we
need to combine the design patterns like
Iterator, Mediator or Command.

Here we are taking an example that uses the
Mediator design pattern.

To demonstrate the concept of Memento design
pattern we are taking an example of dice that

records the dice numbers.

Command.java

import java.awt.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.awt.FontMetrics;

interface Command {
void execute();
}

Memento.java

class Memento {
int number;
Memento(int num) {
number = num;
}
int getNumber() {
return number;
}
}

ButtonDice.java

import java.awt.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.awt.FontMetrics;

class ButtonDice extends JButton implements
Command {
Mediator mediator;
ButtonDice(ActionListener al, Mediator med) {
super(“Throw Dice”);
addActionListener(al);
mediator = med;
mediator.registerDice(this);
}
public void execute() {
mediator.throwit();
}
}

ButtonClear.java

Design Patterns



94    Java Jazz Up   Jan-08

import java.awt.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.awt.FontMetrics;

class ButtonClear extends JButton
implements Command {
Mediator mediator;
ButtonClear(ActionListener al, Mediator med)
{
super(“Clear”);
addActionListener(al);
mediator = med;
mediator.registerClear(this);
}
public void execute() {
mediator.clear();
}
}

ButtonPrevious.java

import java.awt.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.awt.FontMetrics;

class ButtonPrevious extends JButton
implements Command {
Mediator mediator;
ButtonPrevious(ActionListener al, Mediator
med) {
super(“Previous”);
addActionListener(al);
mediator = med;
mediator.registerPrevious(this);
}
public void execute() {
mediator.previous();
}
}

Display.java

import java.awt.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.awt.FontMetrics;

class Display extends JLabel{
Mediator mediator;
Display (Mediator med) {
super(“0”,JLabel.CENTER);
mediator = med;
mediator.registerDisplay(this);
setBackground(Color.white);
setBorder(new EtchedBorder(Color.blue,
Color.green));
Font font = new Font(“Arial”,Font.BOLD,40);
setFont(font);
}
}

Mediator.java

import java.awt.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.awt.FontMetrics;

class Mediator {
ButtonDice btnDc;
ButtonPrevious btnPrvs;
ButtonClear btnClr;
Display display;
java.util.List list, undo;
boolean restart = true;
int counter = 0, ct = 0;
//....
Mediator() {
list = new ArrayList();
undo = new ArrayList();
}
void registerDice(ButtonDice bd) {
btnDc = bd;
}
void registerClear(ButtonClear bc) {
btnClr = bc;
}
void registerPrevious(ButtonPrevious bp) {
btnPrvs = bp;

Design Patterns



   Jan-08   Java Jazz Up   95

}
void registerDisplay(Display disp) {
display = disp;
}
void throwit() {
display.setForeground(Color.black);
int num = (int)(Math.random()*6 +1);
int i = counter++;
list.add(i, new Integer(num));
undo.add(i, new Memento(num));
display.setText(“”+num);
}

void previous() {
display.setForeground(Color.red);
btnDc.setEnabled(false);
if (undo.size() > 0) {
ct = undo.size()-1;
Memento num = (Memento)undo.get(ct);
display.setText(“”+num.getNumber());
undo.remove(ct);
}
if (undo.size() == 0)
display.setText(“0”);
}
void clear() {
list = new ArrayList();
undo = new ArrayList();
counter = 0;
display.setText(“0”);
btnDc.setEnabled(true);
}
}

MementoDemoDp.java

import java.awt.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.awt.FontMetrics;

class MementoDemoDp extends JFrame
implements ActionListener {
Mediator mediator = new Mediator();
MementoDemoDp() {
JPanel panel = new JPanel();
panel.add(new ButtonDice(this,mediator));
panel.add(new
ButtonPrevious(this,mediator));
panel.add(new ButtonClear(this,mediator));

JPanel dice = new JPanel();
Display disp = new Display(mediator);
dice.add(disp);
getContentPane().add(dice, “Center”);
getContentPane().add(panel, “South”);
setTitle(“Memento pattern example”);
setDefaultCloseOperation(EXIT_ON_CLOSE);
setSize(400,200);
setVisible(true);
}
public void actionPerformed(ActionEvent ae) {
Command cmd = (Command)ae.getSource();
cmd.execute();
}
public static void main(String[] args) {
new MementoDemoDp();
}
}

Design Patterns



96    Java Jazz Up   Jan-08

1. Copy content from one file to another
This example explains how to copy contents
from one file to another file. Copy file is one of
the good use of io package of Java. The logic of
program is explained below:

Explanation

This program copies one file to another file. We
will be declaring a function called copyfile which
copies the contents from one specified file to
another specified file.

copyfile(String srFile, String dtFile)
The function copyfile(String srFile, String dtFile)
takes both file name as parameter. The function
creates a new File instance for the file name
passed as parameter

File f1 = new File(srFile);
File f2 = new File(dtFile);

and creates another InputStream instance for
the input object and OutputStream instance for
the output object passed as parameter

InputStream in = new FileInputStream(f1);
OutputStream out = new
FileOutputStream(f2);

and then create a byte type buffer for buffering
the contents of one file and write to another
specified file from the first one specified file.

byte[] buf = new byte[1024];
out.write(buf, 0, len);

CopyFile.java:

import java.io.*;

public class CopyFile{
private static void copyfile(String srFile,

String dtFile){
try{

File f1 = new File(srFile);
File f2 = new File(dtFile);
InputStream in = new

FileInputStream(f1);
OutputStream out = new

FileOutputStream(f2);

byte[] buf = new byte[1024];
int len;
while ((len = in.read(buf)) > 0){

out.write(buf, 0, len);
}
in.close();
out.close();
System.out.println(“File copied.”);

}
catch(FileNotFoundException ex){

System.out.println(ex.getMessage() + “
in the specified directory.”);

System.exit(0);
}
catch(IOException e){

System.out.println(e.getMessage());
}

}
public static void main(String[] args){

switch(args.length){
case 0: System.out.println(“File has not

mentioned.”);
System.exit(0);

case 1: System.out.println(“Destination
file has not mentioned.”);

System.exit(0);
case 2: copyfile(args[0],args[1]);

System.exit(0);
default : System.out.println(“Multiple

files are not allow.”);
  System.exit(0);

}
}

}

Output:

C:\javajazzup>javac CopyFile.java
C:\ javajazzup>java CopyFile a.java
Filterfile.txt
File copied.
C:\ javajazzup>

2. Pop-up Menus

A PopupMenu is similar to a Menu as it contains
MenuItem objects. The Pop-up Menu can be
popped over any component while generating
the appropriate mouse event rather than letting
it appear at the top of a Frame. Menu class can
only be added to a Frame and not to the Applet.

Tips & Tricks



   Jan-08   Java Jazz Up   97

To add it to the Applet you need to use the
Swing component set.

In the program code given below, we have used
MouseEvent.isPopupTrigger() method to trigger
the MouseEvent that pops up the menu. The
example below shows the triggering of a pop-
up menu and its activation through a command
button.

Code of Program: PopupMenuDemo.java
 
import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class PopupMenuDemo extends Applet{
    Button b;
    TextField msg;
    PopupAppMenu m;
    public PopupMenuDemo(){
      setSize(200, 200);
      b = new Button(“Pop-up Menu”);
      add(b, BorderLayout.NORTH);
      msg = new TextField();
      msg.setEditable(false);
      add(msg, BorderLayout.SOUTH);
      m = new PopupAppMenu(this);
      add(m);
      b.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
          m.show(b, 20, 20);
          }
  });
  addMouseListener(new MouseAdapter(){
    public void mousePressed(MouseEvent e){
      if (e.isPopupTrigger())
 m.show(e.getComponent(), e.getX(),
e.getY());
     }
public void mouseReleased(MouseEvent e){
      if (e.isPopupTrigger())
m.show(e.getComponent(), e.getX(),
e.getY());
      }
    });
    }
public static void main(String[] args){
popupMenuDemo app = new
PopupMenuDemo();
app.setVisible(true);

    }
  }

class PopupAppMenu extends PopupMenu
implements ActionListener{
PopupMenuDemo ref;
public PopupAppMenu(PopupMenuDemo ref){
    super(“File”);
    this.ref = ref;
    MenuItem mi;
    add(mi = new MenuItem(“Copy”));
    mi.addActionListener(this);
    add(mi = new MenuItem(“Open”));
    mi.addActionListener(this);
    add(mi = new MenuItem(“Cut”));
    mi.addActionListener(this);
    add(mi = new MenuItem(“Paste”));
    mi.addActionListener(this);
    }
public void actionPerformed(ActionEvent e){
String item = e.getActionCommand();
ref.msg.setText(“Option Selected: “ + item);
    }
  }

PopupMenuDemo.html

<HTML>
<HEAD>
</HEAD>
<BODY>
<APPLET ALIGN=”CENTER”
CODE=”PopupMenuDemo.class”
WIDTH=”800" HEIGHT=”500"></APPLET>
</BODY>
</HTML>

Run the program:

C:\newprgrm>javac PopupMenuDemo.java
C:\newprgrm>appletviewer
PopupMenuDemo.html

Tips & Tricks



98    Java Jazz Up   Jan-08

Output of the program:

3. JSlider Component of Java Swing

A Slider is a Swing tool that lets the user
select a value within a bounded range by
moving a knob. In this program, events on
the JSlider component have also been shown.
If you increase or decrease the slider by
selecting then the actual position of the slider
will be displayed on a label. Some methods
and APIs have been used to create a JSlider
component and perform various tasks related
to the slider. Methods and APIs are as follows:

JSlider :
This class creates the slider for the swing
application.

ChangeListener:
This is the interface of which is used to call
stateChanged() method which receives the
event generated by the slider using
addChangeListener() method of the JSlider
class.

ChangeEvent:
This is the class that handles the event
generated by the JSlider component on change
the state.

addChangeListener(object):
This is the method of the JSlider class which is
used to handle event on change the selected
state of the JSlider component.

Code of Program: SliderExample.java

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

public class SliderExample{
  JSlider slider;
  JLabel label;
  public static void main(String[] args){
    SliderExample cs = new SliderExample();
  }

  public SliderExample(){
    JFrame frame = new JFrame(“Slider”);
    slider = new JSlider();
    slider.setValue(50);
    slider.addChangeListener(new
MyChangeAction());
    label = new JLabel(“JavaJazzUp”);
    JPanel panel = new JPanel();
    panel.add(slider);
    panel.add(label);
    frame.add(panel, BorderLayout.CENTER);
    frame.setSize(400, 100);
    frame.setVisible(true);
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  }

  public class MyChangeAction implements
ChangeListener{
    public void stateChanged(ChangeEvent
ce){
      int value = slider.getValue();
      String str = Integer.toString(value);
      label.setText(str);
    }
  }
}

Output:

Tips & Tricks



   Jan-08   Java Jazz Up   99

You can slide the knob at any desired position
as shown below:

4. Dialog Box In Swing Application

In non-swing application we were using
System.in class for input or output some text
or numeric values but now in the swing
application we can use JOptionPane class to
show the output or show the message. This
way of inputting or outputting works very
efficiently in the Swing Applications. The window
for showing message for input or output makes
your application very innovative.

JOptionPane class is available in the
javax.swing package. This class provides
various types of message dialog box as follows:

1. A simple message dialog box that has only
one button i.e. “Ok”. This type of message
dialog box is used only for showing the
appropriate message and user can finish the
message dialog box by clicking the “Ok”
button.

2. A message dialog box that has two or
three buttons. You can set several values for
viewing several message dialog box as

follows:

1.)    “Yes” and “No”
2.)    “Yes”, “No” and “Cancel”
3.)    “Ok”, and “Cancel”

3. An input dialog box that contains two
buttons “Ok” and “Cancel”.

The JOptionPane class has three methods as
follows:

showMessageDialog(): First is the
showMessageDialog() method which is
used to display a simple message.

showInputDialog(): Second is the
showInputDialog() method which is used
to display a prompt for inputting. This
method returns a String value which is
entered by you.

showConfirmDialog(): And the last or third
method is the showConfirmDialog() which
asks the user for confirmation (Yes/No) by
displaying message. This method returns a
numeric value either 0 or 1. If you click on the
“Yes” button then the method returns 1
otherwise 0.

I. Show dialog box.

Message dialog box is used to display
informative messages to the user. In the
example program, we will use JOptionPane class
to display the message Dialog box. Our program
display “Show Message” button on the window
and when user clicks on it program displays
Message box with “OK” button and message
“JavaJazzUp”.

Description:

showMessageDialog():

This method is used to show a message dialog
box which contains some text messages. This
is being used with two arguments in the program
where the first argument is the parent object
in which the dialog box opens and another is
the message which has to be shown.

Tips & Tricks



100    Java Jazz Up   Jan-08

Code of Program: ShowDialogBox.java

import javax.swing.*;
import java.awt.event.*;
public class ShowDialogBox{

JFrame frame;
public static void main(String[] args){
ShowDialogBox db = new ShowDialogBox();
              }
public ShowDialogBox(){
frame = new JFrame(“Show Message Dialog”);
JButton button = new JButton(“Show
Message”);
button.addActionListener(new MyAction());
frame.add(button);
frame.setSize(300, 300);
frame.setVisible(true);
frame.setDefaultCloseOperation
(JFrame.EXIT_ON_CLOSE);
              }
public class MyAction implements
ActionListener{
public void actionPerformed(ActionEvent e){
JOptionPane.showMessageDialog
(frame,”JavaJazzUp”);
                            }
              }
}

Output:

When you run the program, following window
will be displayed:

When you click on “Show Message” button,
following Message is displayed:

II. Show message and confirm dialog
box

There are three types of message dialog box
that you can use in your swing applications.
In this section, we will display several types of
message boxes. When you run the program,
it will display a frame with three buttons.

Description:

1. showMessageDialog(): Above method
shows a simple message dialog box, which holds
only one button i.e. “Ok” button. This method
takes four arguments in which, first is the
parent object name, second is the message as
string, third is the title of the message dialog
box as string and the last is the type of the
message dialog box.

2. showConfirmDialog(): Above method
asks from the user by displaying a message
dialog box, which contains more than one
button. Depending on the parameter passed
it can be “Ok” and “Cancel” or  “Yes”, “No”
and “Cancel”. This method returns the integer
value.

Code of Program:
ShowMessageDialog.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ShowMessageDialog{
  JButton button;
  public static void main(String[] args){
    ShowMessageDialog md = new

Tips & Tricks



   Jan-08   Java Jazz Up   101

ShowMessageDialog();
  }

  public ShowMessageDialog(){
    JFrame frame = new JFrame(“Message
Dialog Box”);
    button = new JButton(“Simple message
dialog box”);
    button.addActionListener(new MyAction());
    JPanel panel = new JPanel();
    panel.add(button);
    button = new JButton(“\”Ok/Cancel\”
message dialog box”);
    button.addActionListener(new MyAction());
    panel.add(button);
    button = new JButton(“\”Yes/No/Cancel\”
dialog box”);
    button.addActionListener(new MyAction());
    panel.add(button);
    frame.add(panel);
    frame.setSize(400, 200);
    frame.setVisible(true);
    frame.setDefaultCloseOperation
(JFrame.EXIT_ON_CLOSE);
  }

  public class MyAction implements
ActionListener{
    public void actionPerformed(ActionEvent
ae){
      String str = ae.getActionCommand();
      if(str.equals(“Simple message dialog
box”)){
        JOptionPane.showMessageDialog(null,
“Simple message dialog box.”, “javajazzup”,
1);
      }
      else if(str.equals(“\”Ok/Cancel\” message
dialog box”)){
        if(JOptionPane.showConfirmDialog(null,
“\”Ok/Cancel\” message dialog box.”,
“javajazzup”,
JOptionPane.OK_CANCEL_OPTION) == 0)
          JOptionPane.showMessageDialog(null,
“You clicked on \”Ok\” button”, “javajazzup”,
1);
        else
          JOptionPane.showMessageDialog(null,
“You clicked on \”Cancel\” button”,
“javajazzup”, 1);
      }
      else if(str.equals(“\”Yes/No/Cancel\”

dialog box”)){
        JOptionPane.showConfirmDialog(null,
“\”Yes/No/Cancel\” message dialog box.”);
      }
    }
  }
}

Output

If you click on the first button then the simple
message box will open which holds only “Ok”
button as shown below:

If you click on the second button then the
confirm dialog box will open which asks for “Ok”
and “Cancel”.

Tips & Tricks



102    Java Jazz Up   Jan-08

If you click on the third button from the main
window or frame then a confirm message dialog
box will open with three button i.e. the “Yes”,
“No” and “Cancel” like the following image:

III. Show input dialog box

Java Swing provides the way to input any text
or numeric value in a normal window (Input
Dialog Box). It contains two buttons “Ok” and
“Cancel”. The program given below shows a
button labeled by “Show Input Dialog Box to

enter name” on the frame. Clicking the button
opens an input dialog box. If you click on the
“Ok” button then a message dialog box appears
containing message “Welcome: entered_text”
otherwise it displays a message dialog box
containing message “You pressed cancel
button.”.

Code of Program: ShowInputDialog.java

import javax.swing.*;
import java.awt.event.*;

public class ShowInputDialog{
  public static void main(String[] args){
    JFrame frame = new JFrame(“Input Dialog
Box Frame”);
    JButton button = new JButton(“Show
Input Dialog Box to enter name”);
    button.addActionListener(new
ActionListener(){
      public void actionPerformed(ActionEvent
ae){
        String str =
JOptionPane.showInputDialog(null, “Enter
your name: “,
“JavaJazzUp”, 1);
        if(str != null)
          JOptionPane.showMessageDialog(null,
“Welcome:   “ + str,
“JavaJazzUp”, 1);
        else
          JOptionPane.showMessageDialog(null,
“You pressed cancel button.”,
“JavaJazzUp”, 1);
      }
    });
    JPanel panel = new JPanel();
    panel.add(button);
    frame.add(panel);
    frame.setSize(300, 300);
    frame.setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE);
    frame.setVisible(true);
  }
}

Tips & Tricks



   Jan-08   Java Jazz Up   103

Output:

Clicking “Show Input Dialog Box to enter name”
button creates Input Dialog Box as shown
below:

If “User” is entered as name in the input box
then it welcomes the user with its name as
shown below:

Tips & Tricks



104    Java Jazz Up   Jan-08

Advertise with JavaJazzUp
We are the top most providers of technology
stuffs to the java community. Our technology
portal network is providing standard tutorials,
articles, news and reviews on the Java
technologies to the industrial technocrats. Our
network is getting around 3 million hits per
month and its increasing with a great pace.

For a long time we have endeavored to provide
quality information to our readers. Furthermore,
we have succeeded in the dissemination of the
information on technical and scientific facets of
IT community providing an added value and
returns to the readers.
We have serious folks that depend on our site
for real solutions to development problems.

JavaJazzUp Network comprises of :

http://www.roseindia.net
http://www.newstrackindia.com
http://www.javajazzup.com
http://www.allcooljobs.com

Advertisement Options:

Banner  Size Page Views  Monthly
Top Banner 470*80 5,00,000 USD 2,000
Box Banner 125 * 125 5,00,000 USD 800
Banner 460x60 5,00,000 USD 1,200
Pay Links Un Limited USD 1,000
Pop Up Banners Un Limited USD 4,000

The http://www.roseindia.net network is the
“real deal” for technical Java professionals.
Contact me today to discuss your
customized sponsorship program. You may
also ask about advertising on other
Technology Network.

Deepak Kumar
deepak@roseindia.net



   Jan-08   Java Jazz Up   105

Valued JavaJazzup Readers Community

We invite you to post Java-technology
oriented stuff. It would be our pleasure
to give space to your posts in
JavaJazzup.

Contribute to Readers Forum

If theres something youre curious about, were
confident that your curiosity, combined with the
knowledge of other participants, will be enough
to generate a useful and exciting Readers
Forum. If theres a topic you feel needs to be
discussed at JavaJazzup, its up to you to get it
discussed.

Convene a discussion on a specific subject

If you have a topic youd like to talk about .
Whether its something you think lots of people
will be interested in, or a narrow topic only a
few people may care about, your article will
attract  people interested in talking about it at
the Readers Forum. If you like, you can prepare
a really a good article to explain what youre
interested to tell java technocrates about.

Sharing Expertise on Java Technologies

If youre a great expert on a subject in java,
the years you spent developing that expertise
and want to share it with others. If theres
something youre an expert on that you think
other technocrates might like to know about,
wed love to set you up in the Readers Forum
and let people ask you questions.

Show your innovation

We invite people to demonstrate innovative
ideas and projects. These can be online or
technology-related innovations that would bring
you a great appreciations and recognition
among the java technocrates around the globe.

Hands-on technology demonstrations

Some people are Internet experts. Some are
barely familiar with the web. If you’d like to show
others aroud some familiar sites and tools, that
would be great. It would be our pleasure to
give you a chance to provide your
demonstrations on such issues : How to set

up a blog, how to get your images onto Flickr,
How to get your videos onto YouTube,
demonstrations of P2P software, a tour of
MySpace, a tour of Second Life (or let us know
if there are other tools or technologies you
think people should know about...).

Present a question, problem, or puzzle

Were inviting people from lots of different
worlds. We do not expect everybody at Readers
Forum to be an expert in some areas. Your
expertise is a real resource you may contribute
to the Java Jazzup. We want your curiosity to
be a resource, too. You can also present a
question, problem, or puzzle that revolves
around java technologies along with their
solution that you think would get really
appreciated by the java readers around the
globe.

Post resourceful URLs

If you think you know such URL links which
can really help the readers to explore their java
skills. Even you can post general URLs that
you think would be really appreciated by the
readers community.

Anything else

If you have another idea for something youd
like to do, talk to us. If you want to do
something that we havent thought of, have a
crazy idea, wed really love to hear about it.
Were open to all sorts of suggestions, especially
if they promote readers participation.



106    Java Jazz Up   Jan-08



   Jan-08   Java Jazz Up   107


