
   Mar-08   Java Jazz Up   1



2    Java Jazz Up   Mar-08



   Mar-08   Java Jazz Up   3

March 2008  Volume I  Issue IX

“Optimism with determination lets you
hit the goal harder”

Published by

RoseIndia

JavaJazzUp Team

Editor-in-Chief

Deepak Kumar

Editor-Technical

Ravi Kant

Sr. Graphics Designer

Suman Saurabh

Graphics Designer

Santosh Kumar
Amardeep Patel

Editorial

Register with JavaJazzUp

and grab your monthly issue

“Free”

Dear Readers,

We are back here with the Holi (Mar 2008) issue of
Java Jazz-up. The current edition is specially designed
for the sprouting technocrats. This issue highlights the
interesting Java technologies especially for the
beginners.

Though it was a hard job to simplify the complexities of
the technologies like Hibernate 3.0, struts 2, JSF and
Design Patterns. Still our team has done a marvelous
work in making it easy and simpler for the new
programmers regime. This issue reflects our consistent
attempts to avail the quality technological updates
that enforce the readers to appreciate it a lot and be a
part of its Readers Community.

Java News and Updates section provides the latest
updates of the things happening around the globe
making the readers aware of the java technological
advancement. In this section, you will know the new
features introduced in the existing tools, utilities,
application servers, IDEs, along with the Java API
updates.

We are providing it in a PDF format so that you can
view and even download it as a whole and get its hard
copy.

Please send us your feedback about this issue and
participate in the Reader’s Forum with your problems,
issues concerned with the topics you want us to
include in our next issues.

Editor-in-Chief
Deepak Kumar
Java Jazz up



4    Java Jazz Up   Mar-08

05 Java News | Testing and optimizing Java code without test automation for handling
concurrent activities is rather difficult.

12 Introduction to XSL | XSL stands for EXtensible Stylesheet Language. The World Wide Web
Consortium (W3C) started to develop XSL because there was a need for an XML-based
Stylesheet Language. Thus it is a language for expressing Stylesheets.

18 JAXP API using DOM Parser |In the previous issue of Java Jazz Up, you have read about
the JAXP APIs and learned how an XML document is parsed using the serially access mode
(SAX) parser.

24 Struts 1.1 | This tutorial provides you a better understanding to develop a robust application
using Jakarta Struts Framework.

29 Struts 2 Non-form Tags (UItags) |Apache Struts is an open-source framework used to
develop Java web applications. In this section, struts 2 non-form tags (UItags) will be discussed.

36 Design Pattern | These types of design patterns are used as templates. These design patterns
are used in such conditions when we need a parent class having one or more methods to be
implemented by their child classes.

38 Visitor Design Pattern| The design pattern provides additional functionality to a class. The
Visitor pattern allows us to create an external class to act on data in other classes.

40  Dojo Tutorial| Dojo: Dojo is an Open Source JavaScript toolkit libraries that provides a
simple API(Application Programming Interface) for building the serious applications in less time.

45 Hibernate Query Language| In the previous issue of Javajazzup you learned about Hibernate
Query Language and its different kind of clauses. Lets quickly focus on the overview of HQL.

52 Using the Desktop class to launch a URL with default browser in Java| This article describes
the new Desktop API, which allows Java applications to interact with the default applications
associated with specific file types on the host platform.

55 Advertise with Us | We are the top most providers of technology stuffs to the java
community. Our technology portal network is providing standard tutorials, articles, news
and reviews on the Java technologies to the industrial technocrats.

57 Valued JavaJazzup Readers Community | We invite you to post Java-technology
oriented stuff. It would be our pleasure to give space to your posts in JavaJazzup.

Content



   Mar-08   Java Jazz Up   5

Java News and Releases
Concurrency Testing in Java Applications

Testing and optimizing Java code without test
automation for handling concurrent activities
is rather difficult. Even with test automation,
being able to correlate the test activity from
the client side to observations of thread,
memory, object and database connection use
on the server side is difficult at best. This tool
describes methods to test concurrency in Java
applications and also displays the new technique
for correlating about the task that a Java
application server is doing on the server side
however a load test automation tool drives a
test on the client side.

Most of the IT managers consent about the
concurrency testing that it is the right way to
determine many performance bottlenecks,
resource contention issues, and service
interruptions. However, only few of the
developers use concurrency testing because the
available test tools are not satisfactory.

New Features in EJB 3.1

New features are added to the EJB 3.1.
Experts are trying to make changes to the EJB
3.1 for the next version of the Java EE
specification. The idea behind these changes is
to provide the head's up on the changes as
well as gather your feedback early so the expert
group has the best chance of getting it right.
EJB 3.0 is made simple to Java EE 5 by moving
away from a heavyweight-programming model.
EJB 3.1 targets to build the successes
movement down the path of simplicity along
with a handful of much-needed features.

The features added to EJB 3.1 makes the
interfaces optional for EJBs and Singleton Beans,
but none of the features has been finalized yet;
all of this is really just a peek into the inner
workings of the JCP so that you have a chance
provide early feedback.

1. EJB Interfaces are Optional

In EJB 3.1, now you do not need to define any
interfaces for Session Beans, just like JPA
Entities and Message Driven Beans. All you have
to do is annotate a POJO with the @Stateless
or @Stateful to get a fully functional EJB.

2. The Singleton Beans

A new feature of Singleton Beans is added in
EJB 3.1 that is used to store application-wide
shared data. The JEE container maintains a single
shared instance of an EJB 3.1 Singleton that
can cache state across the application tier. Like
all other EJBs, Singletons are simply annotated
POJOs.

3. Support for direct use of EJBs in the servlet
container, including simplified packaging options.
Like the web.xml file that resides in the WEB-
INF directory, you would be able to place an
EJB jar into the WEB-INF/lib directory.

4. Support for stateful web services via Stateful
Session Bean web service endpoints.



6    Java Jazz Up   Mar-08

Load Balancing Tomcat with Apache

Tomcat is the most popular application server
that is used for hosting web applications.
Apache is also popular web server that enables
services such as https encryption and
decryption, URL rewriting etc. Apache also
serves as a load balancer for balancing the load
between several Tomcat application servers.

Profiles in the Java EE 6 Platform

Profiles are an attempt to modularize the
different parts in Java EE so that the
technologies can be combined in a product. This
will help in solving the issue of compatibility
requirements in order to provide the natural
approach by spanning the multiple technologies.
E.g: Java EE 5 specification contains
requirements to which the servlet containers
must honor with respect to the availability of
JTA. The idea behind Java EE 6 is to rewrite
such type of requirements, which can be applied
to any profiles and implementations, concerning
the relevant combination of technologies. E.g:
any product corresponding to any Java EE
profile including servlets as well as JTA will have
to be sincere to those requirements. The logic
includes two components: the first one is that,
we think that the Java EE requirements add
significant value to standalone technologies, as
testified e.g. by the large number of servlet
containers implementing JTA so that it is
compatible with what Java EE mandates;
simultaneously, calling out the requirements
that helps to ensure that applications that
target profiles will work on the full platform.

This whole phenomena makes profiles more
than just collections of independently tested
technologies, as those technologies will be tied
together in interesting ways, deliver more
functionality than they would on their own.

Java News and Releases

Apache Geronimo 2.1 Released -- Java EE
5 server

Recently, Apache Geronimo team announced
the release of Apache Geronimo 2.1.
Apache Geronimo 2.1 is developed on the Java
EE 5 certified 2.0 release of Geronimo. Geronimo
2.1 provides the following new features:

Custom Server Assemblies:
Geronimo 2.1 greatly simplifies the build-time
customization. It allows the users to follow a
function-centric approach, choosing the desired
set of server plugins (e.g. Web
Container+JMS+Deploy capabilities).

Flexible Administration Console:
Now the Geronimo Administration Console
matches the dynamic capabilities of the server
runtime.

Gshell:
It is a command-line processing environment
required to execute Geronimo administrative
commands.

WADI Clustering:
Now WADI enables to cluster Web Applications
for both Tomcat and Jetty-based configurations
of Geronimo.

Comet: Reverse Ajax for streaming data
from the server

Comet is a technology that pushes the events
from the server side to a browser client. It
avoids the issues related to having a browser
poll a server to check for new events. Comet
looks at the nature of real-time events, such
as those occurring in the stock market or in
sporting matches. Rich-client technologies such
as Flash or Java this process seems original
particularly since these last technologies have
combined mechanisms such as remoting and
steaming that deals with asynchronous
requests from both server to client and vice
versa. But Comet is all about concerning the
last process having the same vanilla
technologies like Ajax namely JavaScript and



   Mar-08   Java Jazz Up   7

HTML.
However concerning with the actual term, Comet
is different to Ajax's meaning outside IT circles
as a household cleaner. But sudden name or
not, Comet serves the purpose of an umbrella
name for delivering data onto browsers as it
becomes available on the serverside, a technique
that will surely be of the same impact and go
hand in hand with what we know today as Ajax.

MyEclipse Blue Edition: Low-Cost Tool
Alternative for WebSphere

Genuitec announced the new release of a
product, MyEclipse Blue Edition that targets
IBM’s Rational Application Developer (RAD) and
WebSphere development.

With ending support to WebSphere Application
Developer (WSAD), all WebSphere users
necessitates to upgrade their toolsuites to IBM
RAD so that they can support the latest features
in the WebSphere 6.1 server that is a transition
having high cost in terms of time and hard
currency. Since many of these IBM shops are
necessarily requiring changing their tool
environments, Genuitec has offered a choice to
the consumers.

MyEclipse 6.1 Blue Edition is the new edition
offering a complimentary toolsuite for a tiny
fraction of the cost to the RAD users. This new
Blue Edition has a cost only $149 per year, and
provides a full support. You donot need to worry
about nullifying your existing support contracts.
You're free to use as MyEclipse Blue Edition uses
IBM's own Web Services. MyEclipse 6.1 Blue
Edition is in Milestone stage 1, and provided as
a tool to download and use upto April 1st.

App Performance Management Scenario:
Changing Java Developer’s Role

Developers are spending most of their time in
maintaining existing applications, instead of
actually developing new features. This changes
the scenario of development that tends to be a
little more workmanlike than we'd like to admit
sometimes.

This is not the new task as most of the
developers rarely admit the new development,
even in the new projects; new features are
created as if they were being built in maintenance
mode instead of being made out of whole cloth.

A lot of tools exist to impose the specific
problems therefore most of the application
management lifecycle are spending their time
in finding specific problems.

Two processes avoid most of the maintenance
work while the SSQ article mentions only one
of them.

The first maintenance obstacle is testing – The
whole application can be tested, as the
application failures are the larger aspect of
application maintenance.

The other maintenance obstacle is performance
– performance is managed in a better way by
assuming it as an attribute of the code
throughout development, rather than deploying
and testing the application and finding out after
"completion" that it doesn't meet its
performance requirements.

Agile development helps by forcing for more
tests throughout the entire lifecycle; using Java
application servers helps in isolating the
performance issues as they provide a central
node for monitoring, While there are many of
the performance tools available for Java leverage
the application server and its APIs in just this
fashion, by monitoring the boundaries between
APIs.

FindBugs™ Released new version:
Version 1.3.2

FindBugs™  recently released a new version:
Version 1.3.2.

This is available for download on
sourceforge.net. and can be installed.

It is a better static analyzer identify a variety of
bugs and potential bugs in Java code.
It can analyze class files and/or source files.

Java News and Releases



8    Java Jazz Up   Mar-08

It provides a bug tree. User can select an item
in the bug tree and may get an explanation in
the text panel.

FindBugs quickly provides an overview of items
required by the programmer in the java code.

New Networking features with PPF grid
toolkit: Releases in v1.1

Recently JPPF i.e. Java Parallel Processing

Framework was released with version 1.1.
New features of JPPF:

Several bugs are fixed

•  Provides a new networking tool i.e. the
TCP port multiplexer that allows it even
to work in the fire walled environments

•  Addition of new node monitoring feature
•  PPF grid takes no time to be up and run
•  provides highly scalable, distributed

framework for the execution of Java
tasks.

•  Better graphical and programmatic tools
•  reliability through redundancy
•  failover recovery capabilities

Apache Tuscany SCA Java 1.1 -incubating
released

Apache Tuscany team has announced the
release of the Java SCA project of version 1.1.
It provides a runtime environment based on
SCA (Service Component Architecture), which
is a set of specifications to simplify SOA
application development, standardized by
OASIS.

This release has added features like JMS binding,
improved policy support and an implementation
extension for representing client side JavaScript
applications as SCA components.

New Run Time Editor 3 (RTE3) for Java Released

The new RTE3 is the control system interface
design environment that has been designed for
network control in java. RTE3 is fully written in

Java so it is very expandable. It is available for
Windows and Linux environment.

RTE3 provides some new capabilities like multi-
threaded, multi-processor aware, easy socket
communication, MP3 and MPEG capabilities,
access dlls, shell scripting, unlimited run time
editing/ scripting, multiple windows, multiple
pages, grouping, group editing, built-in
database access, unlimited undo/redo etc.

Theory and Practice of Ropes for Java String
Manipulations

Java language’s default String and StringBuilder
classes poorly serves to large quantities of data
manipulated by the Systems. A rope data
structure may be a better alternative. A rope
implementation for the Java platform; provides
pointers for effective use of the library and
defines performance issues. Iteration over a flat
Rope (a Rope having depth of 1) is much faster
than pulling data character by character from a
String is the most considerable thing for an
enterprise Java developer. If you do not need
to do this, then Ropes are completely
meaningless to you.

Carlos Perez: Top Five Java Technologies to
Learn in 2008

Carlos Perez has posted a list of the top five
Java-based technologies to learn in 2008.

They are:

• OSGi, a specification for dynamic
modules for Java

• The Java Content Repository spec,
appeared first time in the JCP in
February 2002

• Google Web Toolkit, first version
released in May, 2006

• Groovy, first version released in May,
2004

• Cloud computing, a concept designed
around the use of virtual servers, or
distributed computing without using
EJB

Java News and Releases



   Mar-08   Java Jazz Up   9

However all the above technologies are holder
technologies perhaps are “coming of age” and
became matured to the point of
recommendation. But definitely all these
technologies are still useful as OSGi works as
module system behind Eclipse, while Groovy is
continuously accepting by the developer with
its formal specification and continually improved
releases, GWT is already mature and stable,
and cloud computing is becoming more and
more famous in this growing marketplace.

On the other hand, JCR and cloud computing
are the least accepted of these technologies,
and vendors are trying to address that, with
competitions to spur awareness or active
community involvement.

Apache Jackrabbit 1.4 released

Apache Jackrabbit 1.4 is the latest and greatest
version of Content Repository for Java
Technology API (or JCR in short) conforming
that Apache Jackrabbit 1.4 provides the full open
source implementation of JCR.

JCR is a standard API to access the content
repositories in a uniform manner and is specified
in JSR 170. A content repository is a hierarchical
representation storage media similar to an
advanced file system supporting different levels
of content structure and granularity. The API
provides various functionalities such as
browsing, modifying, and searching the content
in full text search in a content repository.
Standard allows advanced features like
versioning, observation, locking, and XA
transactions as optional.

Apache Jackrabbit provides one of the best JCR
implementations and was also used as the
reference implementation of JSR 170. Apache
Jackrabbit 1.4 is a stable and feature-rich
content repository aimed having a wide range
of content applications including Magnolia,
OpenKM, Hippo, and Mindquarry. Jackrabbit
provides implementation for all the mandatory
and optional JCR features as well as a number
of extensions and related JCR tools.

Apache Jackrabbit is the biggest ever release

having 220 new features, improvements and
bug fixes on the basis of feedback and
contributions from the user community.

Sun Microsystems has agreed to buy MySQL
AB for $1B

Sun Microsystems has acceded to buy MySQL
AB for $1B, by providing additional leverage in
the open source community and also allowing
access to MySQL to its larger corporations. The
grand question that arises is that: what does
this mean in the long term? Sun already offers
a small-scale database as compared to
compared to 'large offerings' like Oracle9 and
IMS. Is Sun considerably looking for an
additional revenue stream from MySQL AB's
customers, or shifting away from JavaDB/
Derby?

JVM Lies: The OutOfMemory Myth

The concept "JVM Lies: The OutOfMemory Myth,"
tells about the happening when a JVM throws
an OutOfMemoryError – the developers who
have encountered it have noticed, it seems like
it's out of memory, but it always doesn't look
like it, and throws more RAM at the JVM may
help, but that's the wrong solution.

Shades of HotJava: LoboBrowser, a web
browser in Java

JavaLobby have introduced a LoboBrowser, a
fully Java web browser. Although it is not
HotJava, yet it runs JavaScript if memory is
available while HotJava did not. It is big deal to
develop a workable and installable fully Java
based browser even if it can't render TSS very
well. It also includes a rendering engine, Corba
that can be used to watch DOM of a page even
after JavaScript has been run over it. Integration
into IDEs, can be seen to anyone. E.g providing
browser support without allowing explicit
browser tie-ins.

Java News and Releases



10    Java Jazz Up   Mar-08

ServletExec 6.0 Released

New Atlanta has released ServletExec 6.0 for
download and purchase:

http://www.newatlanta.com/products/
servletexec

Key new features contained in ServletExec
6.0 are:

• Java Servlet API 2.5
• JavaServer Pages (JSP) 2.1
• JSP Standard Tag Library (JSTL) 1.2
• JavaServer Faces (JSF) 1.2
• JavaMail 1.4
• Java Web Services support through
       JAX-WS 2.0
• Updated Web Server support (IIS 7,
       Apache 2.2.x, SJSWS 7.0u1)
• Updated OS support (Windows 2008
       Vista, Solaris 10, AIX 5.3, HP-UX
       11v2)
• AMD/Intel 64-bit support (x64)

Additional improvements are:

• Improved Performance
• IPv6 Protocol support
• Improved Administrative Interface

Important notes:

• JDK/JRE 1.5 or 1.6 is required for
        ServletExec 6.0
• New license for ServletExec 6.0 will be
        provided to the existing customers
        with current subscriptions free of
        charge
• Customers who have already
        purchased ServletExec 5.x on or

after November 1st, 2007 will have
the facility to upgrade to ServletExec
6.0 free of charge

ServletExec is one of the original
implementations of the Java Servlet API and
around 14000 customers in 85 countries has
been purchased to this original implementation.

Java Remoting: Protocol Benchmarks

Every client/server application may have
different remoting requirements, but the main
criteria include performance. At least, you would
to know that how much performance you are
sacrificing in order to fulfil l ing other
requirements.

Java Remoting: Protocol Benchmarks examines
Java's RMI/JRMP, Spring’s HttpInvoker, Oracle's
ORMI (with and without HTTP tunneling enabled),
and three flavors of Apache XML-RPC and
Caucho's Hessian, Hessian 2 and Burlap. Two
graphs are added named as a small list having
250 items or less and a large list having from
500 to 5000 items. The two graphs are
consistent (a good sign for the libraries involved)
- and (surprise!) the binary protocols did far
better on average than the XML-based
protocols.

Article: Integrating Java and Erlang

Enterprise software development world
introduces a new face: Erlang. Erlang is nothing
but a functional programming language having
native constructs for concurrency and reliability.
Erlang is a programming language and Jinterface
is an open source component of Ericsson's Open
Telecom Platform having capability to integrate
Java with Erlang.

Erlang provides a trivial solution for Building
scalable, distributed and reliable systems. It may
be a little bit hard to swallow for many enterprise
developers. Erlang is a dynamically typed
functional language; on the other hand Java is
a statically typed object-oriented language.
Erlang works as a agitator in case of traditional
enterprise development as it is an standard
similar to concurrency, uptimes of five nines or
more, and "hot deployment" of code.

Java Persistence API (JPA) implementation for
Amazon SimpleDB

JPA provides implementation for SimpleDB. A
SimpleDB is webservice for running queries on
structured data in real time. The current version
supports the following features:

Java News and Releases



   Mar-08   Java Jazz Up   11

• @ManyToOne - object references.
• @OneToMany - collections.
• @MappedSuperClass - Useful

timestamping class and for a common
ID.

• @Inheritance
• @Lob - stores lobs in S3 so make it as

big as you want (up to 5GB).
• @Id - Assigns UUID automatically
• Lazy loading on ManyToOne, Lobs and

OneToMany so only hits SDB on an as
needed basis.

• Rudimentary caching to reduce hits on
SDB

• JPA Queries
• Perst All-Java Embedded Database

Adds KD-Tree Indexes

McObject  provides support for the KD-Tree. A
KD-Tree is a database index that is used in
spatial and pattern-matching applications, to
Perst. It is an open source, object-oriented all-
Java embedded database system. Developers
who have been working with Perst, the KD-
Tree helps them in expanding coding efficiency
and helps in making Java data objects easier to
use in certain types of application.

The new k-dimensional tree or in short KD-Tree
index enables us to add a structure in Perst for
storing and manipulating point objects in a k-
dimensional space by partitioning that space.
These are practically used in computer graphics,
geographical information systems and biometric
applications like fingerprint matching as well as
their efficiency in handling multi-dimensional
data, KD-trees helps the developers in "normal"
applications where query predicates include
different combinations of object fields.

McObject's Perst embedded database and
eXtremeDB embedded database provides a
collection various index types, including:

• B-trees used in common sorting,
searching, insertions, and deletions

• R-trees used for geospatial indexing
(mainly in GPS/navigation systems)

• T-trees used in all-in-memory data
storage and accessHash tables for

quickly locating a single unique index
entry

• Patricia trie index, that is used for
speedly searching in networking and
telephony applications

• Custom indexes used in b-trees
allowing to the application to define
the collating sequence of entries; it is
also useful in implementing soundex
algorithm searches, for example

• Bit or bitmap used for optimizing the
indexes for columns in which values
repeat frequently

• TimeSeries class used in dealing
efficiently with small fixed-size objects

• Specialized versions of collections used
in thick indices (indexes having
multiple duplicate values), and bit
indexes

• KD-Tree is developed by using the
latest versions of Perst for Java and
.NET. It is available for free download
at McObject’s Web site.

Java News and Releases



12    Java Jazz Up   Mar-08

Introduction to XSL

XSL stands for EXtensible Stylesheet Language.
The World Wide Web Consortium (W3C) started
to develop XSL because there was a need for
an XML-based Stylesheet Language. Thus it is
a language for expressing Stylesheets.

A stylesheet specifies the presentation of XML
information using two basic categories of
techniques:

• An optional transformation of the input
document into another structure.

• A description of how to present the
transformed information.

The components of the XSL language
The full XSL language logically consists of three
component languages, which are described in
three W3C (World Wide Web Consortium)
Recommendations:

• XPath: XML Path Language is an
expression language used by XSLT to
access or refer specific parts of an XML
document

• XSLT: XSL Transformations is a
language for describing how to transform
one XML document (represented as a
tree) into another.

• XSL-FO: Extensible Stylesheet
Language Formatting Objects is a
language for formatting XML documents
and Formatting Properties.

Understanding XSL Stylesheet Structure
(a) XSLT namespace

The XSL stylesheet starts with the root element
<xsl:stylesheet> or <xsl:transform> that
declares the document to be an XSL style sheet.

The correct way to declare an XSL style sheet
according to the W3C XSLT

Recommendation is:

<?xml version=”1.0" ?>
<xsl:stylesheet version=”1.0"
xmlns:xsl=”http://www.w3.org/1999/XSL/
Transform”>

or:

<xsl:transform version=”1.0"
xmlns:xsl=”http://www.w3.org/1999/XSL/
Transform”>

Since an XSL style sheet is an XML document
itself, it always begins with the XML declaration:
<?xml version=”1.0" ?>

To get access to the XSLT elements, attributes
and features we must declare the XSLT
namespace at the top of the document.
The xmlns:xsl=”http://www.w3.org/1999/XSL/
Transform” points to the official W3C XSLT
namespace. If you use this namespace, you
must also include the attribute version=”1.0".
This specification uses a prefix of xsl: for
referring to elements in the XSLT namespace.
However, XSLT stylesheets are free to use any
prefix.

Now set it up to produce HTML-compatible
output:

<xsl:stylesheet
  ...
  >
  <xsl:output method=”html”/>
   ...
</xsl:stylesheet>

(b) Stylesheet Element

The <xsl:template> Element
An XSL style sheet consists of a set of rules
that are called templates. Each template
“matches” some set of elements in the source
tree and then describes the contribution that
the matched element makes to the result tree.
Most templates have the following form:

<xsl:template match=”/”>
    <html><body>
      <xsl:apply-templates/>
    </body></html>
  </xsl:template>

Introduction to XSL



   Mar-08   Java Jazz Up   13

Before processing can begin, the part of the
XML document with the information to be copied
to the output must be selected with an XPath
expression. The selected section of the
document is called a node and is normally
selected with the match operator.

In the above statements, the <xsl:template>
element defines a template. The match=”/”
attribute associates the template with the root
node of the XML source document. Another
approach is to match the document element
(the element that includes the entire document).

The <xsl:apply-templates> Element
The <xsl:apply-templates> element applies a
template to the current element or to the
current element’s child nodes.
If we add a select attribute to the <xsl:apply-
templates> element it will process only the child
element that matches the value of the attribute.
We can use the select attribute to specify the
order in which the child nodes are processed.

The <xsl:value-of> Element
The <xsl:value-of> element can be used to
extract the value of an XML element and add it
to the output stream of the transformation.
For example, the given expression will select
the value of Emp_Id attribute of the specified
element and write to the output:

<xsl:value-of select=”Emp_Id”/>
            or
<xsl:value-of select=”Employee-Detail/
Employee/Emp_Id”/>

Note: The value of the select attribute is an
XPath expression. An XPath expression works
like navigating a file system; where a forward
slash (/) selects subdirectories.

The <xsl:for-each select=”elementName
“> Element
The ‘for-each’ expression is a loop that
processes the same instructions for these
elements. The XSL <xsl:for-each> element can
be used to select every XML element of a
specified node-set. For example, the given
expression finds all ‘Employee’ elements in the
‘Employee-Detail’ element context using the
XPath expression ‘Employee-Detail/ Employee’.

If the selected node contains all elements in
the root, all of the ‘Employee-Detail’ elements
will be selected.

<xsl:for-each select=”Employee”>
<xsl:value-of select=”Emp_Id”/>
<xsl:value-of select=”Emp_Name”/>
</xsl:for-each>

Introduction to XSLT

Extensible Stylesheet Language
Transformations (XSLT) is an XML-based
language that transforms an XML documents
and generates output into a different format
such as HTML, XML or another type of
document that is recognized by a browser like
WML, and XHTML.

XSLT is an extension of XSL, which is a
stylesheet definition language for XML.
With XSLT you can add/remove elements and
attributes to or from the output file. You can
also rearrange and sort elements, and make
decisions about which elements to hide and
display.

XSLT uses XPath to find information in an XML
document. XPath is used to navigate through
elements and attributes in XML documents.

Introduction to XSL



14    Java Jazz Up   Mar-08

The following figure shows the working
process of XSLT:

XSLT Processors

The job of an XSLT processor is to apply an
XSLT stylesheet to an XML source document
and produce a result document, (for example
HTML document). There are several XSLT
processors, but a few good one (Open sources),
such as MSXML4, Saxon, and Xalan, XT, Oracle.
Most of them can be downloaded free from Web
sites.

Apache’s Xalan XSLT engine

Xalan is the Apache XML Project’s XSLT engine.
This processor is available at http://
xml.apache.org/xalan/. We will concentrate on
using this engine for transformation our XML
document that we have developed and want to
transform it into output document in the HTML
format.

Once the Xalan.zip or .gzip file is downloaded,
unpack it and add these files to your
CLASSPATH. These files include the .jar file for

the Xerces parser, and the .jar file for the Xalan
stylesheet engine itself. The .jar files are named
xercesImpl.jar, and xalan.jar.

Working with XSLT APIs

XSLT consist of three components that
transform an XML document into the required
format. These components are:

• An instance of the TransformerFactory
• An instance of the Transformer
• The predefined transformation

instruction

TransformerFactory is an abstract class used
to create an instance of the Transformer class
that is responsible for transforming a source
object to a result object.

The process of XML transformation starts when
you create an instance of the
TransformerFactory class. An instance of the
Transformer class is then created using the
instance of the TransformerFactory class. This
instance of the Transformer class uses the XML
document as a source object and optionally
uses the predefined instructions required for
transformation to generate the formatted
output as a result object. You can create the
source XML document using SAX, DOM, or an
input stream. The result object of the
transformation process is in the form of a SAX
event handler, DOM, or an output stream.

During transformation process, the original
document is not changed; rather, a new
document is created based on the content of
an existing one. The new document may be
serialized (output) by the processor in standard
XML syntax or in another format, such as HTML
or plain text.

The following figure shows the working
process of XSLT APIs:

Introduction to XSL



   Mar-08   Java Jazz Up   15

The XSLT Packages

The XSLT APIs is defined in the following
packages:

Package Description
javax.xml.transform Defines the

TransformerFactory
and Transformer
classes. These
classes are used to
get an object for
doing
transformations.
After creating a
transformer object,
its transform()
method is invoked.
This method
provides an input
(source) and output
(result).

javax.xml.transform.domDefines classes
used to create input
and output objects
from a DOM.

javax.xml.transform.sax Defines classes
used to create input
from a SAX parser
and output objects
from a SAX
event handler.

javax.xml.transform.stream Defines classes

used to create
input and output
objects from an
I/O stream.

In this tutorial, we will convert a simple XML file
into HTML using XSLT APIs.
To develop this program, do the following steps:

1. Create an XML file

The code for the emp.xml file is given below:

<?xml version = “1.0” ?>

<Employee-Detail>

<Employee>
<Emp_Id> E-001 </Emp_Id>
<Emp_Name> Nisha </Emp_Name>
<Emp_E-mail> Nisha1@yahoo.com </
Emp_E-mail>
</Employee>

<Employee>
<Emp_Id> E-002 </Emp_Id>
<Emp_Name> Amit</Emp_Name>
<Emp_E-mail> Amit2@yahoo.com </Emp_E-
mail>
</Employee>

<Employee>
<Emp_Id> E-003 </Emp_Id>
<Emp_Name> Deepak </Emp_Name>
<Emp_E-mail> Deepak3@yahoo.com </
Emp_E-mail>
</Employee>

</Employee-Detail>

2. Create an XSL Stylesheet

Lets see the source code of XSL stylesheet
(emp.xsl) that provides templates to transform
the XML document:

<?xml version=”1.0" ?>
<xsl:stylesheet xmlns:xsl=”http://
www.w3.org/1999/XSL/Transform”
version=”1.0">
<xsl:output method=”html” indent=”yes”/>

Introduction to XSL



16    Java Jazz Up   Mar-08

<xsl:template match=”/”>
<html>
<title>XSLT Style Sheet</title>
<body>
<h1><p align=”center”>Employee Details</
p></h1>
      <xsl:apply-templates/>
      </body>

</html>
</xsl:template>

<xsl:template match=”Employee-Detail”>

<table border=”2" width=”50%”
align=”center”>
<tr bgcolor=”LIGHTBLUE”>
<td><b>Emp_Id</b></td>
<td><b>Emp_Name</b></td>
<td><b>Emp_E-mail</b></td>
</tr>

<xsl:for-each select=”Employee”>
<tr>

       <td><i><xsl:value-of select=”Emp_Id”/
></i></td>
        <td><xsl:value-of select=”Emp_Name”/
></td>

<td><xsl:value-of select=”Emp_E-mail”/
></td>

</tr>
</xsl:for-each>
</table>

</xsl:template>

</xsl:stylesheet>

3. Create a Java program using XSLT APIs

Now we will develop a class in Java that takes
both XML and XSL file as an input and
transforms them to generate a formatted HTML
file.

Here is the source code of the
SimpleXMLTransform.java:

import javax.xml.transform.ErrorListener;
import javax.xml.transform.Transformer;
import javax.xml.transform.Transformer
ConfigurationException;
import

javax.xml.transform.TransformerException;
import
javax.xml.transform.TransformerFactory;
import
javax.xml.transform.stream.StreamResult;
import
javax.xml.transform.stream.StreamSource;

public class SimpleXMLTransform {
    static public void main(String[] arg) {
        if(arg.length != 3) {
            System.err.println(“Usage:
SimpleXMLTransform “ +
                “<input.xml> <input.xsl>
<output>”);
            System.exit(1);
        }
        String inXML = arg[0];
        String inXSL = arg[1];
        String outTXT = arg[2];

        SimpleXMLTransform st = new
SimpleXMLTransform();
        try {
            st.transform(inXML,inXSL,outTXT);
        }
catch(TransformerConfigurationException e) {
            System.err.println(“Invalid factory
configuration”);
            System.err.println(e);
        } catch(TransformerException e) {
            System.err.println(“Error during
transformation”);
            System.err.println(e);
        }
    }
    public void transform(String inXML,String
inXSL,String outTXT)
                throws
TransformerConfigurationException,
                    TransformerException {

        TransformerFactory factory =
TransformerFactory.newInstance();

        StreamSource xslStream = new
StreamSource(inXSL);
        Transformer transformer =
factory.newTransformer(xslStream);
        transformer.setErrorListener(new
MyErrorListener());

Introduction to XSL



   Mar-08   Java Jazz Up   17

Introduction to XSL

        StreamSource in = new
StreamSource(inXML);
        StreamResult out = new
StreamResult(outTXT);
        transformer.transform(in,out);

System.out.println(“The generated HTML
file is:” + outTXT);
    }
}
class MyErrorListener implements
ErrorListener {
    public void warning(TransformerException
e)
                throws TransformerException {
        show(“Warning”,e);
        throw(e);
    }
    public void error(TransformerException e)
                throws TransformerException {
        show(“Error”,e);
        throw(e);
    }
    public void fatalError(TransformerException
e)
                throws TransformerException {
        show(“Fatal Error”,e);
        throw(e);
    }
    private void show(String
type,TransformerException e) {
        System.out.println(type + “: “ +
e.getMessage());
        if(e.getLocationAsString() != null)
            System.out.println(e.getLocationAsString());
    }
}

This program uses three arguments to take
inputs from the command line: arg[0] is for
XML file, arg[1] is for XSL file, and arg[2] is
for taking the name of the html file that will be
generated after the transformation.

As in the earlier section, we have described the
working process of XSLT APIs. First, this
program creates an instance of the
TransformerFactory class. The new instance
of the Transformer class is created using an
“xslStream” instance of the StreamSource
class. This instance of the Transformer class
required for transformation to generate the

formatted output as a result object. Its method
transform(in,out) takes two arguments: the
XML document as a source object and the
result document as an output object in the form
of HTML.

4. Compile and Run the Program

C:\nisha\xslt>javac SimpleXMLTransform.java

C:\nisha\xslt>java SimpleXMLTransform
emp.xml emp.xsl emp.html
The generated HTML file is:emp.html

The format of the generated output file
“emp.html” will look like this:



18    Java Jazz Up   Mar-08

In the previous issue of Java Jazz Up, you have
read about the JAXP APIs and learned how an
XML document is parsed using the serially
access mode (SAX) parser. Now you will learn
how the DOM parser works with the same xml
document. Lets quickly focus on the overview
of XML parser.

Introduction to XML Parser:

In computing terms, a parser is a program that
takes input in the form of sequential
instructions, tags, or some other defined
sequence of tokens, and breaks them up into
easily manageable parts.

XML parser is used to read, update, create and
manipulate an XML document. Whenever the
XML document executes, the parser recognizes
and responds to each XML structure taking
some specified action based on the structure
type.

XML parsers can be validating or nonvalidating.
Validating parser checks the contents of a
document against a set of specific rules i.e. in
what order they must appear. These rules
appear in an XML document either as an optional
XML structure called a document type definition,
or DTD, or as an XML Schema.

Nonvalidating parsers are smaller and faster,
but they do not check documents against the
DTD. They only check whether the XML
document is structurally well formed or not.
Parsing XML Documents

To manipulate an XML document, XML parser is
needed. The parser loads the document into
the computer’s memory. Once the document is
loaded, its data can be manipulated using the
appropriate parser.

In this section, we will discuss about DOM
parsers of JAXP APIs and for accessing XML
documents in random access mode. The
specifications to ensure the validity of XML
documents are DTDs and the Schemas.

DOM (Document Object Model)

The XML Document Object Model (XML DOM)

defines a standard way to access and
manipulate XML documents using any
programming language (and a parser for that
language).

The DOM presents an XML document as a tree-
structure (a node tree), with the elements,
attributes, and text defined as nodes. DOM
provides access to the information stored in
your XML document as a hierarchical object
model.

The DOM converts an XML document into a
collection of objects in an object model in a
tree structure (which can be manipulated in any
way). The textual information in XML document
gets turned into a bunch of tree nodes and a
user can easily traverse through any part of
the object tree, any time. This makes easier to
modify the data, to remove it, or even to insert
a new one. This mechanism is also known as
the random access protocol.

DOM is very useful when the document is small.
DOM reads the entire XML structure and holds
the object tree in memory, so it is much more
CPU and memory intensive. The DOM is most
suited for interactive applications because the
entire object model is present in memory, where
it can be accessed and manipulated by the user.

The Document Object Model implementation is
defined in the following packages:

JAXP APIs Description
org.w3c.dom Defines the Document

class (a DOM) along with
the classes for all of the
components of a DOM.

javax.xml.parsers The JAXP APIs provide a
common interface for
different vendors’ to use
SAX and DOM parsers.

The DOM API is defined in org.w3c.dom package
of JAXP-APIs. The DOM API is easier to use. It
provides a tree structure of objects. The DOM
API is used to manipulate the hierarchy of
application objects it encapsulates.

JAXP API using DOM Parser



   Mar-08   Java Jazz Up   19

Main classes of javax.xml.parsers package for
the DOM:

Classes Description

DocumentBuilder Defines the API to
obtain DOM
Document
instances from an
XML document.

DocumentBuilderFactory Defines a factory
API that enables
applications to
obtain a parser
that produces
DOM object trees
from XML
documents

The diagram here shows the JAXP APIs to
process xml document using the DOM parser:

Understanding DOM Parser

At the very first, javax.xml.parsers.Document
BuilderFactory class creates the instance of
DocumentBuilder. Through which it produces
a Document (a DOM) that conforms to the DOM
specification.  The System property determines
the builder at the run time using
javax.xml.parsers.DocumentBuilderFactory (it
selects the factory implementations to produce
the builder). The platform’s default value i.e.
system property can be overridden from the
command line.

Another  method of DocumentBuilder as
newDocument() can also be used implementing
org.w3c.dom.Document interface that creates

an empty Document.

Alternatively, one of the builder’s parse
methods can be used to create a Document
from existing XML data. As a result, a DOM
tree like that shown in the diagram.

Creating Blank DOM Document
 The following code creates a blank document:

//Create instance of DocumentBuilderFactory
    DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
    //Get the DocumentBuilder
    DocumentBuilder parser =
factory.newDocumentBuilder();
    //Create blank DOM Document
        Document doc =
parser.newDocument();

The class DocumentBuilderFactory is
responsible for creating new DOM parsers. The
instance of the class DocumentBuilder is used
to create a blank document. The
newDocument() method of the class returns
a blank DOM document.

Creating DOM Child Elements

Once new document has been created, you
can add the element to it. First element of the
document is called the root element; another
elements added to the document are called
child elements of the root.
The following steps generate a DOM document
having root and child elements.

(1) Creating the root element

As you have seen above that how to create a
blank DOM document using DocumentBuilder
object. The following code creates a blank
document.

//Create blank DOM Document
Document doc = docBuilder.newDocument();

The createElement method is used to create
the root element and appendChild method is

JAXP API using DOM Parser



20    Java Jazz Up   Mar-08

used to append the element to the DOM
document.

//create the root element
Element root = doc.createElement(“root”);
//all it to the xml tree
doc.appendChild(root);

(2) Adding Comment Element to DOM Tree

The doc.createComment method is used to
reate Comment object.

//create a comment
Comment comment =
doc.createComment(“This is comment”);
//add in the root element
root.appendChild(comment);

(3) Adding Child Element to DOM Tree

The doc.createElement method is used to
create Child element.

//create child element
Element childElement =
doc.createElement(“Child”);
//Add the atribute to the child
childElement.setAttribute(“attribute1”,”The
value of Attribute 1");
root.appendChild(childElement);

(4) Printing the DOM Tree on console

An finally we will print the DOM tree on the
console with the following code:

TransformerFactory tranFactory =
TransformerFactory.newInstance();
Transformer aTransformer =
tranFactory.newTransformer();
Source src = new DOMSource(doc);
Result dest = new
StreamResult(System.out);
aTransformer.transform(src, dest);

Here is the full source code of
CreateDomXml.java

import org.w3c.dom.*;
import javax.xml.parsers.DocumentBuilder;
import

javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import
javax.xml.transform.stream.StreamResult;

class CreateDomXml
{
  public static void main(String[] args)
  {
    try{
    //Create instance of
DocumentBuilderFactory
    DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
    //Get the DocumentBuilder
    DocumentBuilder docBuilder =
factory.newDocumentBuilder();
    //Create blank DOM Document
        Document doc =
docBuilder.newDocument();

    //create the root element
        Element root =
doc.createElement(“root”);
    //add it to the xml tree
        doc.appendChild(root);

      //create a comment
      Comment comment =
doc.createComment(“This is comment”);
      //add in the root element
      root.appendChild(comment);

    //create child element
    Element childElement =
doc.createElement(“Child”);
    //Add the atribute to the child
    childElement.setAttribute(“attribute1”,”The
value of Attribute 1");
    root.appendChild(childElement);

    TransformerFactory tranFactory =
TransformerFactory.newInstance();
    Transformer aTransformer =
tranFactory.newTransformer();

    Source src = new DOMSource(doc);
    Result dest = new
StreamResult(System.out);

JAXP API using DOM Parser



   Mar-08   Java Jazz Up   21

    aTransformer.transform(src, dest);

    }catch(Exception e){
      System.out.println(e.getMessage());
    }
  }
}

The given code will generate the following xml
code and display on the console.

<?xml version=”1.0" encoding=”UTF-8"
standalone=”no”?>
<root>
<!—This is comment—>
<Child attribute1=”The value of Attribute 1"/
>
</root>

Download the Program

Lets see another example that helps you to
retrieve the elements as well as their
corresponding data from the DOM tree.
In this example you need a well-formed XML
file that has some data (Emp_Id, Emp_Name
and Emp_E-mail in our case).

Here is the XML File (emp.xml) to be parsed:

<?xml version = “1.0” ?>
<Employee-Detail>
<Employee>
<Emp_Id> E-001 </Emp_Id>
<Emp_Name> Vinod </Emp_Name>
<Emp_E-mail> Vinod1@yahoo.com </
Emp_E-mail>
</Employee>
<Employee>
<Emp_Id> E-002 </Emp_Id>
<Emp_Name> Amit </Emp_Name>
<Emp_E-mail> Amit2@yahoo.com </Emp_E-
mail>
</Employee>
<Employee>
<Emp_Id> E-003 </Emp_Id>
<Emp_Name> Deepak </Emp_Name>
<Emp_E-mail> Deepak3@yahoo.com </
Emp_E-mail>
</Employee>
</Employee-Detail>

Develop a java file (GetDomData.java) that
uses an xml file to parse. Initially the program
checks that the given file exists or not by using
exists() method. It determines that the parsed
xml is well formed or not. If you enter a file
that doesn’t exist it will show “File not found!”.

Here is a sample code of this program:

File file = new File(xmlFile);
if (file.exists()){

      DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder builder =
factory.newDocumentBuilder();
Document doc = builder.parse(xmlFile);
      System.out.println(xmlFile + “ is well-
formed “);

To parse the xml file you need the
DoucnemtBuilderFactory and DocumentBuilder.
The object of the DocumentBuilder uses parse
method and determines that the parsed xml is
well formed or not. If xml document is will-
formed, it will display a message “emp.xml is
well-formed!” Otherwise prints “emp.xml isn’t
well-formed!”.

Now, lets see the sample code to retrieve the
elements from the xml file:

        NodeList list =
doc.getElementsByTagName(“*”);
        for (int i=0; i<list.getLength(); i++){
          // Get element
          Element element =
(Element)list.item(i);
          //Source src = new
DOMSource(element);
            System.out.println(element.getNodeName());

}

The doc object helps in create a NodeList
through the getElementByTagName()
method. The NodeList helps you in getting the
length and Element. For getting the node name
you use the getNodeName() method.

Now, lets see the sample code to retrieve the
data from the elements:

JAXP API using DOM Parser



22    Java Jazz Up   Mar-08

//Create transformer
Transformer tFormer =

TransformerFactory.newInstance().newTransformer();
// Output text type

tFormer.setOutputProperty(OutputKeys.METHOD,
“text”);
//Write the document to a file
           Source source = new
DOMSource(doc);

Result result = new
StreamResult(System.out);
tFormer.transform(source, result);

The setOutputProperty method of the
Transformer class set the output key as a text
to print the data on console. Then the
transform() method displays the data source
and the given destination. This program uses
the “System.out” to display the data on the
console.

Here is full source code of GetDomData.java:

import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import
javax.xml.transform.stream.StreamResult;

public class GetDomData{
static public void main(String[] arg) {

try{
BufferedReader bf = new

BufferedReader(new
InputStreamReader(System.in));

System.out.print(“Enter XML file name:
“);

String xmlFile = bf.readLine();
File file = new File(xmlFile);
if (file.exists()){

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder builder =
factory.newDocumentBuilder();

Document doc = builder.parse(xmlFile);
System.out.println(xmlFile + “ is well-

formed “);

NodeList list =
doc.getElementsByTagName(“*”);
        for (int i=0; i<list.getLength(); i++){
          // Get element
          Element element =
(Element)list.item(i);
          //Source src = new
DOMSource(element);
            System.out.println(element.getNodeName());

}
// Create transformer

Transformer tFormer =
TransformerFactory.newInstance().newTransformer();
// Output text type

tFormer.setOutputProperty(OutputKeys.METHOD,
“text”);
// Write the document to a file

Source source = new DOMSource(doc);
Result result = new

StreamResult(System.out);
tFormer.transform(source, result);

}
else{

System.out.println(“File not found!”);
}

}
catch (Exception e){

System.err.println(e);
System.exit(0);

}
}

}

Output of the Program:

C:\nisha>javac GetDomData.java

C:\nisha>java GetDomData
Enter XML file name: emp.xml
emp.xml is well-formed
Employee-Detail
Employee
Emp_Id
Emp_Name
Emp_E-mail
Employee
Emp_Id
Emp_Name

JAXP API using DOM Parser



   Mar-08   Java Jazz Up   23

Emp_E-mail
Employee
Emp_Id
Emp_Name
Emp_E-mail

 E-001
 Nisha
 nisha1@yahoo.com

 E-002
 Amit
 amit2@yahoo.com

 E-003
 Deepak
 deepak3@yahoo.com

C:\nisha>

JAXP API using DOM Parser



24    Java Jazz Up   Mar-08

This tutorial provides you a better
understanding to develop a robust application
using Jakarta Struts Framework. Before starting
we are considering that you have an idea about
developing a web application by using JSP,
Servlets, JDBC and custom tags. So let’s from
the Jakarta Struts Framework.

Struts

Struts Frame is nothing but the implementation
of Model-View-Controller (MVC) design pattern.
Struts is an open source framework and
maintained as a part of Apache Jakarta project.
Struts Framework suits to develop any size of
application. You can down the latest version of
struts from http://jakarta.apache.org/. We are
using jakarta-struts-1.1 and jakarta-tomcat-
5.0.4 for this application. Before going to start
lets first take a brief introduction about MVC
architecture.

Model-View-Controller (MVC) Architecture

Model-View-Controller architecture separates
the application components into three different
parts named Model, View and the Controller.
Each component of the MVC architecture is
independent with the other and also has unique
responsibility. Changes made to one component
have less or no impact on other component.
Here is description about the responsibilities of
the components of MVC architecture:

Model: This part of the MVC architecture
provides access to the data from the database
and also saves the data into the database. Model
includes the business logic of the application.
Model part also checks the Data send by the
user through View before saving it into the
database. Data access, Data validation and the
data saving logic are also part of Model.

View: View part of the MVC architecture handle
the view part of the application by taking the
input from the user, dispatching the request to
the controller and receiving response from the
controller and displaying the result to the user.
HTML, JSPs, Custom Tag Libraries and
Resources files are used as part of view
component.

Controller: Controller part controls the flow
of the entire application. It interacts with Model
and View and the works as Intermediary
between these two components of the MVC
architecture. Controller also receives the request
from client process that request by executing
the appropriate business logic of the Model and
then sends the response to the user using the
View component. Controller part includes
ActionServlet, Action, ActionForm and struts-
config.xml as its parts.

Setting Up Development Environment

Before going to start first of all we have to
setup the development environment for the
application.

JDK Installation:

Download JDK 1.4 or above from sun site.
Follow the instruction given in the installation
process to install JDK on your machine.

Tomcat Installation:
Download the binary version of Tomcat from
the apache site and follow the instruction to
install the tomcat on your machine. For this
application we have downloaded jakarta-tomcat-
5.0.4. After successfully completion of the
installation process test your installation. To test
the installation, go to your installation
directory/bin and issue startup command to
run the server. Open the browser and type http:/
/localhost:8080/ . If it is successfully installed
it should display the welcome page, If not
consult tomcat documentation before going
further.

Installing Struts Application:
Download any version of Struts1 from the site
of Struts http://jakarta.apache.org/struts.
Extract file into the desired directory and then
copy struts-blank.war, struts
documentation.war and struts-example.war
from “jakarta-struts-1.1\webapps”
directtory into “jakarta-tomcat-
5.0.4\webapps” directory.

struts-blank.war is a blank struts application
which is useful in creating struts application from
scratch. We are using this file to create our

Struts 1.1



   Mar-08   Java Jazz Up   25

own web application.

struts-documentation.war includes important
documents and API for the struts application
development.

struts-example.war is simple MailReader
Demonstration Application.

Developing First Struts Application

Rename struts-blank.war  to
StrutsApplication.war from jakarta-tomcat-
5.0.4\webapps and copy it to the “jakarta-
tomcat-5.0.4\webapps” directory. Tomcat
automatically extracts the file and loads the
application.

Copy the source files
(LookupDispatch_Action.java and
MappingDispatch_Action.java) into the source
directory (src directory), jsp files
MappingDispatchAction.jsp and
MappingDispatchActionSave.jsp into the pages
directory, index.jsp file in the StrutsApplication
directory parallel to the pages and WEB-INF
directory, struts-config.xml, web.xml, struts-
bean.tld, and struts-html.tld parallel to the lib
and the classes directory in the WEB-INF
directory, and finally copy the servlet-api.jar and
struts.jar files into the lib directory and then
compile the whole application, start the tomcat
server, open the browser and enter the url http:/
/localhost:8080/StrutsApplication/ and then
press enter, if everything is ok then the welcome
page (that is index.jsp in case of our application)
will be displayed. Here are the different files used
in our application.

LookupDispatch_Action.java

package roseindia.net;
import java.io.*;
import java.util.*;
import javax.servlet.http.HttpServletRequest;
import
javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import
org.apache.struts.actions.LookupDispatchAction;
import org.apache.struts.action.ActionForm;

import
org.apache.struts.action.ActionForward;
import
org.apache.struts.action.ActionMapping;
public class LookupDispatch_Action extends
LookupDispatchAction {
protected Map getKeyMethodMap(){
Map map =  new HashMap();

map.put(“roseindia.net.add”,”add”);
map.put(“roseindia.net.edit”,”edit”);
map.put(“roseindia.net.search”,”search”);
map.put(“roseindia.net.save”,”save”);
            return map;
}

public ActionForward add(ActionMapping
mapping, ActionForm form,

HttpServletRequest request,
HttpServletResponse response) throws
Exception{

System.out.println(“You are in add
function.”);
                         return
mapping.findForward(“add”);

}
public ActionForward edit(ActionMapping

mapping,  ActionForm form,
HttpServletRequest request,

HttpServletResponse response) throws
Exception{
System.out.println(“You are in edit
function.”);
return mapping.findForward(“edit”);

}
    public ActionForward search(ActionMapping
mapping, ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws
Exception{

System.out.println(“You are in search
function”);
                        return
mapping.findForward(“search”);
}

public ActionForward save(ActionMapping
mapping, ActionForm form,
            HttpServletRequest request,
HttpServletResponse response) throws
Exception{

System.out.println(“You are in save
function”);
                        return

Struts 1.1



26    Java Jazz Up   Mar-08

mapping.findForward(“save”);
}

}

MappingDispatch_Action.java

package roseindia.net;
import java.io.*;
import java.util.*;
import javax.servlet.http.HttpServletRequest;
import
javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import
org.apache.struts.actions.MappingDispatchAction;
import org.apache.struts.action.ActionForm;
import
org.apache.struts.action.ActionForward;
import
org.apache.struts.action.ActionMapping;
public class MappingDispatch_Action extends
MappingDispatchAction {
      public ActionForward add(ActionMapping
mapping, ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws
Exception{

System.out.println(“You are in add
function.”);
                        return
mapping.findForward(“add”);

}
     public ActionForward edit(ActionMapping
mapping, ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws
Exception{

System.out.println(“You are in edit
function.”);
                        return
mapping.findForward(“edit”);

}
    public ActionForward search(ActionMapping
mapping, ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws
Exception{
System.out.println(“You are in search
function”);
return mapping.findForward(“search”);

}
   public ActionForward save(ActionMapping

mapping, ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws
Exception{
System.out.println(“You are in save
function”);
return mapping.findForward(“save”);

}
}

MappingDispatchAction.jsp

<%@ taglib uri=”/WEB-INF/struts-bean.tld”
prefix=”bean”%>
<%@ taglib uri=”/WEB-INF/struts-html.tld”
prefix=”html”%>
<html:html locale=”true”>
<HEAD>
 <BODY>
<p><html:link page=”/
MappingDispatchAction.do?parameter=add”>Call
Add Section</html:link></p>
<p><html:link page=”/
MappingDispatchAction.do?parameter=edit”>Call
Edit Section</html:link></p>
<p><html:link page=”/
MappingDispatchAction.do?parameter=search”>Call
Search Section</html:link></p>
<p><html:link page=”/
MappingDispatchAction.do?parameter=save”>Call
Save Section</html:link></p>
</html:html>

MappingDispatchActionSave.jsp

<html>
<head>
<title>Success Message</title>
</head>
<body>
<p align=”center”><font size=”5"
color=”#000080">Welcome to save Page</
font></p>
</body>
</html>

index.jsp

<%@ taglib uri=”/tags/struts-html”
prefix=”html” %>
<html:html locale=”true”>
<head>

Struts 1.1



   Mar-08   Java Jazz Up   27

<html:base/>
</head>
<body>
<p align=”center”><font size=”5"
color=”#800000">Welcome to the Simple
Struts Application</font></p>
<div align=”center”>
  <center>
  <table border=”1" cellspacing=”1"
width=”400">
 <li>
<html:link page=”/pages/
MappingDispatchAction.jsp”>Demo of a
Simple Struts Application</html:link>
</li>
</table>
</center>
</div>
</body>
</html:html>

struts-config.xml

<?xml version=”1.0" encoding=”ISO-8859-1"
?>
<!DOCTYPE struts-config PUBLIC “-//Apache
Software Foundation//DTD Struts
Configuration 1.2//EN””http://
jakarta.apache.org/struts/dtds/struts-
config_1_2.dtd”>
<struts-config>
    <action-mappings>
<action  path=”/LookupDispatchAction”
type=”roseindia.net.LookupDispatch_Action”
parameter=”parameter”
input=”/pages/LookupDispatchAction.jsp”
scope=”request”
validate=”false”>
            <forward name=”add” path=”/pages/
LookupDispatchActionAdd.jsp” /> <forward
name=”edit” path=”/pages/
LookupDispatchActionEdit.jsp” />
<forward name=”search” path=”/pages/
LookupDispatchActionSearch.jsp”/>
<forward name=”save” path=”/pages/
LookupDispatchActionSave.jsp” />
        </action>
<action
path=”/MappingDispatchAction”
type=”roseindia.net.MappingDispatch_Action”
parameter=”add”

input=”/pages/MappingDispatchAction.jsp”
scope=”request”
validate=”false”>
            <forward name=”add” path=”/pages/
MappingDispatchActionAdd.jsp” />

</action>
<action

            path=”/MappingDispatchAction”
            type=”roseindia.net.MappingDispatch_Action”
            parameter=”edit”
            input=”/pages/
MappingDispatchAction.jsp”
           scope=”request”
            validate=”false”>

<forward name=”edit” path=”/pages/
MappingDispatchActionEdit.jsp” />

</action>
<action

            path=”/MappingDispatchAction”
            type=”roseindia.net.MappingDispatch_Action”
            parameter=”search”
            input=”/pages/
MappingDispatchAction.jsp”
            scope=”request”
            validate=”false”>
            <forward name=”search” path=”/
pages/MappingDispatchActionSearch.jsp”/>

</action>
<action

            path=”/MappingDispatchAction”
            type=”roseindia.net.MappingDispatch_Action”
            parameter=”save”
            input=”/pages/
MappingDispatchAction.jsp”
            scope=”request”
            validate=”false”>
           <forward name=”save” path=”/pages/
MappingDispatchActionSave.jsp” />

</action>
    </action-mappings>
</struts-config>

web.xml

<?xml version=”1.0" encoding=”ISO-8859-
1"?>
<!DOCTYPE web-app PUBLIC “-//Sun
Microsystems, Inc.//DTD Web Application 2.2/
/EN” “http://java.sun.com/j2ee/dtds/web-
app_2_2.dtd”>
<web-app>

Struts 1.1



28    Java Jazz Up   Mar-08

  <display-name>Struts Blank Application</
display-name>
  <!— Standard Action Servlet Configuration
(with debugging) —>
  <servlet>
    <servlet-name>action</servlet-name>
    <servlet-
class>org.apache.struts.action.ActionServlet</
servlet-class>
    <init-param>
      <param-name>config</param-name>
      <param-value>/WEB-INF/struts-
config.xml</param-value>
    </init-param>
    <init-param>
      <param-name>debug</param-name>
      <param-value>2</param-value>
    </init-param>
    <init-param>
      <param-name>detail</param-name>
      <param-value>2</param-value>
    </init-param>
    <load-on-startup>2</load-on-startup>
  </servlet>
  <!— Standard Action Servlet Mapping —>
  <servlet-mapping>
    <servlet-name>action</servlet-name>
    <url-pattern>*.do</url-pattern>
  </servlet-mapping>
  <!— The Usual Welcome File List —>
  <welcome-file-list>
    <welcome-file>index.jsp</welcome-file>
  </welcome-file-list>
  <!— Struts Tag Library Descriptors —>
  <taglib>
    <taglib-uri>/tags/struts-html</taglib-uri>
    <taglib-location>/WEB-INF/struts-
html.tld</taglib-location>
  </taglib>
</web-app>

Struts 1.1



   Mar-08   Java Jazz Up   29

Apache Struts is an open-source framework
used to develop Java web applications. In this
section, struts 2 non-form tags (UItags) will
be discussed. Just download the zip file
“struts2nonformuitags.zip” from any link given
below of each page of this article, unzip it and
copy this application to the webapps directory
of Tomcat. Start tomcat and write http://
localhost:8080/struts2nonformuitags to the
address bar. You can examine the result of each
tag from the index page.

1. Action Error and Action Message Tags
Example

The actionerror tag is a UI tag that renders
action errors (in the jsp pages.) if they exist
while the actionmessage tag renders action
messages if they exist.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”actionerrorTag”>
<result>/pages/nonformTags/login.jsp</

result>
</action>
<action name=”login”
class=”net.javajazzup.CheckValidUser”>

  <result name=”input”>/pages/
nonformTags/login.jsp</result>

  <result name=”error”>/pages/
nonformTags/error.jsp</result>

  <result>/pages/nonformTags/
validuser.jsp</result>
</action>

Create an action class that uses methods
addActionMessage(String) and
addActionError(String) within the execute()
method. The addActionMessage(String) will
print the passed string on the success jsp page
while the  addActionError(String) will print the
passed string on the error jsp page.

CheckValidUser.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class CheckValidUser extends
ActionSupport {
  private String username = null;
  private String password = null;
  public String execute() throws Exception{
    if ((getUsername().equals(“javajazzup”))
&&
    (getPassword().equals(“javajazzup”))){

      addActionMessage(“Valid User”);
      return SUCCESS;
    }
    else{
      addActionError(“Invalid User”);
      return ERROR;
    }
  }

Struts 2 Non-form Tags (UItags)



30    Java Jazz Up   Mar-08

  //Set and get the user name
  public void setUsername(String name){
    username = name;
  }
  public String getUsername(){
    return username;
  }
  //set and get the password
  public void setPassword(String pass){
    password = pass;
  }
  public String getPassword(){
    return password;
  }
}

Create a login jsp page as shown:

login.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
  <head>
    <title>Actionerror Tag Example</title>
  <body>
  <s:form action=”login” method=”POST”>
  <s:textfield label=”User Name”
name=”username” size=”20" maxlength=”10"
/>
  <s:password label=”Password”
name=”password” size=”20" maxlength=”10"
/>
  <s:submit value=”Submit” />
  </s:form>

  </body>
</html>

Create a jsp page that will display your error
message  (when fails to logged-in) using the
empty <s:actionerror /> tag as shown:

error.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>

  <head>
    <title></title>
  <body>
  <h1>
  <s:actionerror />
  </h1>
  <a href=”/struts2nonformuitags/
javajazzup/actionerrorTag.action”>Go Back</
a>
  </body>
</html>

Create a jsp page that will display a message
(when successfully logged-in) using the empty
<s:actionmessage /> tag as shown:

validuser.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
  <head>
    <title>Actionerror Tag Example</title>
  <body>
  <h1>
  <s:actionmessage />
  </h1>
  </body>
</html>

You will see the output of the login.jsp as shown
below. Put correct user name and password.

You will get output:

Enter the wrong user name or password in the
login page.

Struts 2 Non-form Tags (UItags)Struts 2 Non-form Tags (UItags)



   Mar-08   Java Jazz Up   31

You will get the following output:

2. Div (Ajax Tag) tag Example

The div tag is an Ajax component that is used
with Ajax that refreshes the content of a
particular section without refreshing the entire
page. The div tag when used with Ajax
refreshes the content of a particular section
without refreshing the entire page. Html <div /
> tag created by Ajax div tag includes it’s
content and is used to obtain it’s content
through a remote XMLHttpRequest call through
the dojo framework.

Add the following code snippet into the
struts.xml file.

strurts.xml

<action name=”div”>
        <result>/pages/div.jsp</result>
</action>

Create a jsp using the tag <s:div>.
div.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
    <head>
        <title>Enter first and last name</title>
    <s:head theme=”ajax” debug=”false”/>

    </head>
    <body>
    <s:url id=”test” value=”/pages/
nonformTags/mask.jsp” />
    <s:div
      id=”one”
      theme=”ajax”
      href=”%{test}”>
    </s:div>
    </body>
</html>

mask.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
    <head>
        <title>Enter first and last name</title>
        <s:head theme=”ajax” debug=”false”/>

    </head>
    <body>
    <s:div id=”maskValue” >
    <div style=”position:absolute;top:10;
left:20; width:300;
height:175;background-color:#E5E5E5;”>
    <h3>Enter first and last name:</h3>
      <s:form theme=”ajax” action=”doMask”>
        <s:textfield name=”firstname”
label=”Firstname” />
        <s:textfield name=”lastname”
label=”Lastname” />
        <s:submit value=”Submit”
theme=”ajax” targets=”maskValue” />
      </s:form>
    </div>
    <br>

    <div id=”8"
style=”position:absolute;top:10; left:350;
width:300; height:160;background-
color:#E5E5E5;”>
      <h3>Output: </h3>
      Firstname : <s:property
value=”firstname” />
      <br><br>
      Lastname :  <s:property
value=”lastname” />
      </div>

Struts 2 Non-form Tags (UItags)



32    Java Jazz Up   Mar-08

    </s:div>
    </body>
</html>

Output:

3. Fielderror Tag (Non-Form UI Tags)
Example

The fielderror tag is a UI tag that renders field
errors if they exist.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”fieldError”> <result>/
pages/nonformTags/loginFielderrorTag.jsp</
result>
</action>
<action name=”checkUser”
class=”net.javajazzup.CheckField”>
           <result name=”input”>/pages/
nonformTags/loginFielderrorTag.jsp</result>

<result name=”error”>/pages/nonformTags/

fielderrorTag.jsp</result>
<result>/pages/nonformTags/

validuser.jsp</result>
</action>

Develop an action class using
addFieldError(String fieldName, String
errorMessage) method. This method adds an
error message for a given field to the
corresponding jsp page.

CheckField.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;

public class CheckField extends ActionSupport
{
  private String username = null;
  private String password = null;
  public String execute() throws Exception{
    if ((getUsername().equals(“javajazzup”))
&&
           (getPassword().equals(“javajazzup”))){
      addActionMessage(“Valid User!”);
      return SUCCESS;
    }
    if(!(getUsername().equals(“javajazzup”)))
    addFieldError(“username”,”Invalid
username!”);

    if(!(getPassword().equals(“javajazzup”)))
    addFieldError(“password”,”Invalid
password!”);

    return ERROR;
  }
  //Set and get the user name
  public void setUsername(String username){
    this.username = username;
  }
  public String getUsername(){
    return username;
  }
  //set and get the password
  public void setPassword(String pass){
    password = pass;
  }
  public String getPassword(){

Struts 2 Non-form Tags (UItags)



   Mar-08   Java Jazz Up   33

    return password;
  }
}

Create a login jsp page as shown:

loginFielderrorTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

Create a jsp page that will display your field
error messages  (when fails to logged-in)
using the empty <s:fielderror/> tag as
shown:

fielderrorTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
  <head>
    <title>Fielderror Tag Example!</title>
  <body>
  <h1><s:fielderror /></h1>
  <a href=”/struts2nonformuitags/
javajazzup/fieldError.action”>Go Back</a>
  </body>
</html>

Create a jsp page that will display your
messages  (when succeed to logged-in) using
the empty <s:actionmessage /> tag as shown:
validuser.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
  <head>
    <title>Actionerror Tag Example!</title>
  <body>
  <h1>
  <s:actionmessage />
  </h1>
  </body>
</html>

Enter the correct user name and wrong
password in the login page. You will see the
output of the loginFielderrorTag.jsp as shown

below:

Enter the wrong user name and correct
password in the login page. You will get the
following output:

Enter incorrect values in both fields of the login
page. You will get the following output:

Enter correct values in both fields of the login
page. You will get the following output:

4. TabbedPanel (Ajax Tag) Example

This is an Ajax component, where each tab is
either a local content or a remote content
(refreshed each time when user selects that

Struts 2 Non-form Tags (UItags)



34    Java Jazz Up   Mar-08

tab).

To use tabbedPanel tag, the head tag must be
included on the jsp page and must be
configured for performance or debugging
purposes. However, If you want to use the
cookie feature then you must provide a unique
id for the tabbedpanel component. This is used
for identifying the name of component that is
stored by the cookie.

Add the following code snippet into the
struts.xml file.

struts.xml

<action name=”tabbedPanel”>
<result>/pages/nonformTags/

tabbedpanel.jsp</result>
</action>

Create a jsp using the tag <s:tabbedPanel>.
This tag is used for creating the tabs.

tabbedpanel.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
  <head>
    <s:head theme=”ajax” debug=”true”/>
  </head>
  <body>
  <table border=”1" width=”30%”>
    <tr>
    <td width=”100%”>

    <s:tabbedPanel id=”test” >

      <s:div id=”one” label=”Tab 1"
theme=”ajax” labelposition=”top” >
        First Panel.<br>
        Tabbed Panel Example<br>

JavaJazzUp
      </s:div>

      <s:div id=”two” label=”Tab 2"
theme=”ajax”>
        Second Panel.<br>
        JavaJazzUp
      </s:div>

      <s:div id=”three” label=”Tab 3"
theme=”ajax”>
        Third Panel.<br>
        JavaJazzUp
      </s:div>

     </s:tabbedPanel>

     </td>
    </tr>
  </table>
  </body>
</html>

Output:

When you run the above example, you get the
output as:

5. tree and treenode (Ajax Tag) tags
Example

In this section, you will learn about the tree
and treenode tags. These both work with the
Ajax support.

tree: This is a tree widget with AJAX support.
Normally this tag uses the “id” attribute. The
“id” attribute is required if the
“selectedNotifyTopic” or the “href” attribute is
going to be used.

treenode: This is a tree node which renders a
tree node within a tree widget with AJAX
support. The following of the two combinations
are used depending on the requirement like
the tree is needed to be constructed dynamically

Struts 2 Non-form Tags (UItags)



   Mar-08   Java Jazz Up   35

or statically.

Dynamically

• id - This is an id of tree node.
• title - This is as like a label to be

displayed for the tree node

Statically

• rootNode - This is the parent node
where the tree is derived form.

• nodeIdProperty - This is the current
tree node’s id.

• nodeTitleProperty - This is the current
tree node’s title.

• childCollectionProperty - This is the
current tree node’s children.

Add the following code snippet to the struts.xml
file.

struts.xml

<action name=”TreeNode”>
<result>/pages/nonformTags/

treenode.jsp</result>
</action>

Create a jsp using the tag <s:tree>. This tag
is used for rendering a tree widget.

Similarly the tag <s:treenode> renders a tree
node with a label attached to the created tree
widget eg..

 <s:treenode theme=”ajax” id=”subchild2"
label=”subchild2" /> tag attaches a new node
to the created tree with a tree node having
id=”subchild2" and a label=”subchild2".

treenode.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
  <head>
    <s:head theme=”ajax” debug=”true”/>
  </head>

  <body>
    <s:tree theme=”ajax” id=”root”
label=”Root”>
      <s:treenode theme=”ajax” id=”child1"
label=”<b>Child 1</b>” />
        <s:treenode theme=”ajax”
id=”subchild1" label=”SubChild 1">
          <s:treenode theme=”ajax”
id=”subchild2" label=”SubChild 2" />
          <s:treenode theme=”ajax”
id=”subchild3" label=”SubChild 3" />
        </s:treenode>
      <s:treenode theme=”ajax” id=”child2"
label=”<b>child 2</b>” />
     </s:tree>
  </body>
</html>

Output:

When you run the above example, you get:

Struts 2 Non-form Tags (UItags)



36    Java Jazz Up   Mar-08

1. Template Design Pattern

These types of design patterns are used as
templates. These design patterns are used in
such conditions when we need a parent class
having one or more methods to be implemented
by their child classes. This design pattern
introduces an idea of defining an algorithm in a
class and leaving some of the methods to be
implemented by their subclasses.

This design pattern is used to develop similar
kind of operations template, reusing the
common behavior to simplify code, algorithm
related improvement, from many generalized
to specialized operations.

Lets take an example of loan application, this
application may have several steps to complete
its processing.

Here we are illustrating several steps to
complete:

• Bank balance history of a client’s
check.

• Credit score of the client’s check taken
from three different companies.

• Other loan information of client’s
check.

• Stock holding value of a client’s check.
• Future income potential of that client’s

check.

In all of the above situations we can use a
template method hold the steps of the process
together without deliberating the actual
implementation of the process’s steps together
without considering the real implementation in
the subclass.

abstract class CheckVariousdtls {

    public abstract void Bankdetails();
    public abstract void Creditdetails();
    public abstract void Loandetails();
    public abstract void Stockdetails();
    public abstract void Incomedetails();

    public void checkdetails() {
        Bankdetails();

Design Pattern

        Creditdetails();
        Loandetails();
        Stockdetails();
        Incomedetails();
    }
}

class LoanApplication extends
CheckVariousdtls {
    private String name;

    public LoanApplication(String name) {
        this.name = name;
    }

    public String getName() {
        return name;
    }

    public void Bankdetails() {
        System.out.println(“Checking bank
details...”);
    }

    public void Creditdetails() {
        System.out.println(“Checking credit
details...”);
    }

    public void Loandetails() {
        System.out.println(“Checking other loan
details...”);
    }

    public void Stockdetails() {
        System.out.println(“Checking stock
values details...”);
    }

    public void Incomedetails() {
        System.out.println(“Checking family
income details...”);
    }

}

class TestTemplateApplication {
    public static void main(String[] args) {

        LoanApplication Clientdtls = new
LoanApplication(“Amit”);



   Mar-08   Java Jazz Up   37

        System.out.println(“\nChecking “ +
Clientdtls.getName()+ “ (client) loan details.
“);
        Clientdtls.checkdetails();

        LoanApplication Clientloandtls = new
LoanApplication(“Aqueel”);
        System.out.println(“\nChecking “ +
Clientloandtls.getName()+ “ (client) loan
details. “);
        Clientloandtls.checkdetails();
    }
}

Best example of template design pattern is
method overloading and method overriding. For
example,

The example illustrated below has an add()
method that is a template method. This add()
method may take any primitive type numerical
value and we can type cast the result according
to our requirement.

abstract class AddNumbers {
   public abstract double addnumbers(double
d1, double d2);
}
class AddAnyTypeOfNumber extends
AddNumbers{
    public double addnumbers(double d1,
double d2) {
        return d1 + d2;
    }
}
class TestApplication {
   public static void main(String[] args) {
       byte b1 = 6, b2 = 2;

   short s1 = 4, s2 = 6;
       int i1 = 1, i2 = 8;
       long l1 = 5, l2 = 9;
       float f1 = 14.7f, f2 = 37.9f;

   double d1 = 12.7, d2 = 11.2;

       AddAnyTypeOfNumber
addanytypeNumber = new
AddAnyTypeOfNumber();

Design Pattern

System.out.println(addanytype
Number.addnumbers(d1,d2));
System.out.println((float)addanytype
Number.addnumbers(f1,f2));
System.out.println((long)addanytype
Number.addnumbers(l1,l2));
System.out.println((int)addanytype
Number.addnumbers(i1,i2));
System.out.println((short)addanytype
Number.addnumbers(s1,s2));
System.out.println((byte)addanytype
Number.addnumbers(b1,b2));
   }
}



38    Java Jazz Up   Mar-08

2. Visitor Design Pattern

The design pattern provides additional
functionality to a class. The Visitor pattern
allows us to create an external class to act on
data in other classes. This is useful in those
conditions if a fair number of instances are
available of small number of classes and we
have to perform some operations on all or on
most of those classes.

Lets take an example that demonstrates that
how the classes implement the Visitor interface.
In the following example we are taking the two
interfaces one is Visitor interface and the other
is Colddrink interface and then we implement
to these interfaces into our classes.

import java.util.*;

interface Visitor {
    public void visit(Colddrink cld_drnk);
}
interface Colddrink {
    public String Order();
}
class Pepsi implements Colddrink {
    final String name = “Pepsi”;
    public String Order() {
        return name;
    }
}
class CocaCola implements Colddrink {
    final String name = “Coke”;
    public String Order() {
        return name;
    }
}

class Pickup implements Visitor {
    private String name;
    private final String method = “Pick and
Go”;
    public void visit(Colddrink cld_drnk) {
        name = cld_drnk.Order();
    }

    public String toString() {
         return name + “ “ + method;
    }
}

class Drinkthere implements Visitor {
    private String name;
    private final String method = “Take the
drink over there”;

    public void visit(Colddrink cld_drnk) {
        name = cld_drnk.Order();
    }

    public String toString() {
        return name + “ “ + method;
    }
}
class GetByDelivery implements Visitor {
    private String name;
    private final String method = “Get it by
delivery”;

    public void visit(Colddrink cld_drnk) {
        name = cld_drnk.Order();
    }

    public String toString() {
         return name + “ “ + method;
    }
}
class Drink {
    public Colddrink getDrink() {
        switch ((int)(Math.random()*3)){
            case 0: return new Pepsi();
            case 1: return new CocaCola();
            default: return null;
        }
    }
    public Visitor howto() {
        switch ((int)(Math.random()*3)){
            case 0: return new Pickup();
            case 1: return new Drinkthere();
            case 2: return new GetByDelivery();
            default: return null;
        }
    }
}
class TestVisitors {

    public static void main(String[] args) {
        List colddrinkList = new ArrayList();
            colddrinkList.add(new Pepsi());
            colddrinkList.add(new CocaCola());

        Iterator it = colddrinkList.iterator();

Visitor Design Pattern



   Mar-08   Java Jazz Up   39

        System.out.println(“How many Cold
drink Shop are there in this area?”);
        while (it.hasNext()) {
           System.out.println(((Colddrink)it.next()).Order());
        }
        Drink drink = new Drink();
        Colddrink cld_drnk = drink.getDrink();
        Visitor vstr = drink.howto();
        vstr.visit(cld_drnk);
        System.out.println(“\n\nChoose the
shop to take the drink?”);
        System.out.println(vstr);
    }
}

Visitor Design Pattern



40    Java Jazz Up   Mar-08

Dojo Tutorial

Dojo: Dojo is an Open Source JavaScript toolkit
libraries that provides a simple API(Application
Programming Interface) for building the serious
applications in less time. The main functionality
of Dojo is to make HTTP requests and receive
their responses. It also provides packages for
string manipulation, DOM manipulation, drag-
and-drop support and DS (Data Structures)
such as lists, queues and stacks. Dojo
applications are used where the JavaScript and
browsers don’t work far enough, in which place
the dojo application gives you the powerful,
portable, lightweight and tested tools for
creating a dynamic interfaces.

Dojo Directory Structure:

Whenever you use Dojo then you follow the
following directory structure and set up the
files of the specified location.

Hello world Example

Here, you will learn to create a “Hello World”
example in Dojo. Before creating any examples
or applications you must follow the directory
structure.

Create a Button:

The following example we are going to create a
button “Hello World!”. To create a button in dojo
you need to a Button Widget that contains
three visual states as: mouseOut, mouseOver
and mouseDown. To follow the following steps
for creating a dojo button widget:

<script type=”text/javascript”>
            // Load Dojo’s code relating to
widget managing functions
            dojo.require(“dojo.widget.*”);

            // Load Dojo’s code relating to the
Button widget
            dojo.require(“dojo.widget.Button”);
</script>

dojo.require(“dojo.widget.*”): It instructs
you to include the dojo widget (Not load all the
widgets) for managing functions.

dojo.require(“dojo.widget.Button”): This
line instructs you to load the Dojo button widget.
If you don’t include this line, the markup code
for the button would not be evaluated by Dojo
upon loading, resulting in a plain HTML button
instead of what you expect.

Insert the following code into the  HTML body:

<button dojoType=”Button”
w i d g e t I d = ” h e l l o B u t t o n ”
onClick=”helloPressed();”>Hello World!</
button>

The key attribute of this HTML element to notice
is the dojoType attribute. This is responsible
for instructing Dojo on how to process the
element when the page is loading. In this case
you will use a button element for the button
that is used to input element - Dojo will work
with either as long as the dojoType attribute is
present.

widgetId=”helloButton”:  This is replaced
with id=”helloButton” without the functionality
being affected - Dojo’s widget system is smart

Dojo Tutorial



   Mar-08   Java Jazz Up   41

enough to convert regular id attributes to
widgetId’s if no widgetId‘ attribute is explicitly
named.

Connecting an Event to the Widget
When you click the command button then it
doing something? We specify an onClick event
handler for the given command button.

dojo.require(“dojo.event.*”);
Above code we use “dojo.event.*” that includes
all events functionality of Dojo (But not all
widgets).

Following function that will called by the button
when we clicked. After clicking the “helloPressed”
method is called and it displays an alert message
like: “Click on the Hello World Button”.

          function helloPressed()
      {
      alert(‘Click on the Hello World Button’);
      }

Here is the code of program:

<html>

<head>
<title>button</title>
    <script type=”text/javascript”>
      dojo.require(“dojo.event.*”);
      dojo.require(“dojo.widget.*”);
      dojo.require(“dojo.widget.Button”);

      function helloPressed()
      {
      alert(‘Click on the Hello World Button’);
      }

      function init()
      {
      var helloButton =
dojo.widget.byId(‘helloButton’);
      dojo.event.connect(helloButton, ‘onClick’,
‘helloPressed’)
      }

    dojo.addOnLoad(init);
    </script>

</head>

<body bgcolor=”#FFFFCC”>

<p align=”center”><font size=”6"
color=”#800000">Welcome to Roseindia
Dojo Project</font></p>

<button dojoType=”Button”
widgetId=”helloButton”
onClick=”helloPressed();”>Hello World!</
button>
<br>
    
</body>

</html>

Output of program:

Tool tips Example

Tool tips:  This is a GUI (Graphical User
Interface) element that is used in conjunction
with a cursor and usually a mouser pointer.

If the mouse cursor over an item, without
clicking a mouse it appears a small box with
supplementary information regarding the items.

Here is the code of program:

<html>
<head>
<title>Tooltip Demo</title>

    <style type=”text/css”>
      @import “../resources/dojo.css”;

Dojo Tutorial



42    Java Jazz Up   Mar-08

      @import “../dijit/themes/tundra/
tundra.css”;

    </style>

    <script type=”text/javascript”
src=”dojo.xd.js” djConfig=”parseOnLoad:
true”></script>

    <script type=”text/javascript”>
      dojo.require(“dojo.parser”);
      dojo.require(“dijit.Tooltip”);
    </script>

</head>
<body class=”tundra”>
<b>Tooltips:</b> <br><br>
        <span id=”site1">Roseindia.net</span>
        <div dojoType=”dijit.Tooltip”
connectId=”site1"
label=”This is a software developement
company!”>
        </div><br><br><br>
    <span id=”site2">Newstrackindia.com</
span>
        <div dojoType=”dijit.Tooltip”
connectId=”site2" label=”This is a news
publishing site!”>
        </div>

</body>
</html>

Output of the program:

Whenever your mouse pointer goes on the
Roseindia.net then you get:

Whenever your mouse pointer goes on the
Newstrackindia.com then you get:

Inline DateTextBox

Here,you will learn about the dojo inline
DateTextBox and how to create a inline
DateTextBox and how to make its editable.
The following code is the InlineEditBox that edits
date of dijit.form.DateTextBox save it
automatically. The inner textarea tag is the
Textarea widget. When a user run this code
then they see the paragraph of rich text. If
user clicks the text, the plain text appears in
paragraph. If you want to change the value then
click the date text and select the appears date.

The InlineEditBox has methods get/
setDisplayedValue, inline. The following code
shows the DateTextBox that makes inline in
HTML.

Here is the code of program:

<html>

<head>
  <title>InlineEdit Date Demo</title>

  <style type=”text/css”>
      @import “../resources/dojo.css”;
      @import “../dijit/themes/tundra/
tundra.css”;

  </style>

    <script type=”text/javascript”
src=”dojo.xd.js” djConfig=”parseOnLoad:
true”></script>

    <script type=”text/javascript”>
       dojo.require(“dojo.parser”);
       dojo.require(“dijit.form.InlineEditBox”);
       dojo.require(“dijit.form.DateTextBox”);
     </script>

Dojo Tutorial



   Mar-08   Java Jazz Up   43

</head>
  <body class=”tundra”>
    <p id=”backgroundArea”
dojoType=”dijit.form.InlineEditBox” >
    <input name=”date” value=”2005-12-30"
dojoType=”dijit.form.DateTextBox”
              constraints={datePattern:’MM/dd/
yy’}
              lang=”en-us”
              required=”true”
              promptMessage=”mm/dd/yy”
              invalidMessage=”Invalid date. Please
use mm/dd/yy format.”>
  </body>
</html>

Output of the program:

When you click the following date then you get
the following and select any date and it
automatically save:

Dojo Tree

In this section, you will learn about the tree
and how to create a tree in dojo.

Tree :  The tree is a GUI that helps to lists the
hierarchical lists. The tree widget is a simple

but the real power comes in the data. It
represents the hierarchical structure of tree.
Data is fed by the powerful dojo.data API.

There are following steps for creating Dojo
trees :

• Create a rooted or rootless trees
(forests)

• Nest, each branch is independently
expandible

• Different icons for different leaf or
branch classes

• Tree data are stored in any dojo.data
implementing API.

• Events fire when users clicked on it.
• Add, remove or disable nodes of tree.

Here is the code of Program:

<html>
<title>Tree</title>
<head>

    <style type=”text/css”>
      @import “../resources/dojo.css”;
      @import “../dijit/themes/tundra/
tundra.css”;
    </style>

    <script type=”text/javascript”
src=”dojo.xd.js” djConfig=”parseOnLoad:
true”></script>

    <script>
        dojo.require(“dojo.data.ItemFileReadStore”);
        dojo.require(“dijit.Tree”);
        dojo.require(“dojo.parser”);
   </script>

</head>
<body class=”tundra”>
Simple Tree:<br><br>
        <div
dojoType=”dojo.data.ItemFileReadStore”
             url=”tree.txt” jsid=”popStore” />
        <div dojoType=”dijit.Tree”
store=”popStore” labelAttr=”sname”
label=”Tree”></div>
</body>
</html>

Dojo Tutorial



44    Java Jazz Up   Mar-08

tree.txt: In JSON format.

{ label: ‘name’,
identifier: ‘name’,
items: [
{ name:’Students’, type:’cat’,
children: [
{ name:’Vinod’, type:’st’ },
{ name:’Suman’, type:’st’ },
{ name:’Deepak’, type:’st’ }
]

},
{ name:’Fruits’, type: ‘cat’,
children: [
{ name:’Apple’, type:’fr’ },
{ name:’Mango’, type:’fr’ },
{ name:’Graps’, type:’fr’,
children: [
{ name:’Sweets’, type:’gr’ },
{ name:’Sour’, type:’gr’ },
{ name:’Salt’, type:’gr’ }
]

}
]

},
{ name:’Vegetables’, type: ‘cat’},
{ name:’Education’, type:’cat’}
]
}

Output of the Program:



   Mar-08   Java Jazz Up   45

In the previous issue of Javajazzup you learned
about Hibernate Query Language and its
different kind of clauses. Lets quickly focus on
the overview of HQL.

Introduction to Hibernate Query Language
Hibernate Query Language or HQL for short is
extremely powerful query language. HQL is
much like SQL and are case-insensitive, except
for the names of the Java Classes and
properties. HQL has its own object-oriented
query language and supports native SQL. It
automatically generates the sql query and
executes it against underlying database.
Hibernate Query Language is extremely
powerful and it supports Polymorphism,
Associations, Much less verbose than SQL. It
uses Classes and properties instead of tables
and columns.

Hibernate uses the following ways to retrieve
objects from the database:

• Hibernate Query Language (HQL)
• Query By Criteria (QBC) and Query BY

Example (QBE) using Criteria API
• Native SQL queries

Lets discuss about the Hibernate Criteria APIs
in brief.

Introduction to Hibernate Criteria APIs
Hibernate Criteria API is a powerful and elegant
alternative to traditional HQL. It is mostly used
in case of complex multi criteria search screens,
where HQL is not very effective. It provides a
well-designed way of building dynamic queries
on Hibernate-persisted databases.

The interfaces of the Criteria Query API
represent an aspect of the relational approach.
There are five core APIs that are commonly
used. These are:

1. Criteria
2. Criterion
3. Restrictions
4. Projection
5. Order

1. Criteria

The interface org.hibernate.Criteria is used
to create the criterion for the search. It is a
simplified API for retrieving entities by composing
Criterion objects. This is a very convenient
approach for functionality like “search” screens
where there is a number of conditions or fields
to be placed upon the result set.

Criteria Interface provides the following
methods:

Method Description

add(Criterion criterion) Adds a Criterion to
constrain the
results to be
retrieved

addOrder(Order order) Add an Order to the
result set.

createAlias(String Join an association
associationPath, , assigning an alias
String alias) to the joined entity

createCriteria(String This method is used
associationPath) to create new

Criteria, “rooted” at
the associated
entity.

setFetchSize(int fetchSize) Set a fetch size for
the underlying JDBC
query.

setFirstResult(int first Set the first result
Result) to be retrieved.

setMaxResults(int Set a limit upon the
maxResults) number of objects

to be retrieved.

uniqueResult() Convenience
method to return a
single instance that
matches the query,
or null if the query
returns no results.

Hibernate Query Language



46    Java Jazz Up   Mar-08

Creating a Criteria instance:

To get a reference to the Criteria interface, use
the createCriteria() method by invoking the
Session class. This method takes the name of
the ORM class on which the query has to be
executed. In essence the Session acts as a
factory for the Criteria class. The statement for
it would be written as:

Criteria criteria=
session.createCriteria(Insurance.class)

The above statement returns a reference to
Criteria for the Order ORM class.

Once created, you add Criterion objects
(generally obtained from static methods of the
Expression class) to build the query. Methods
such as setFirstResult(), setMaxResults(),
and setCacheable() may be used to customize
the query behavior in the same way as in the
Query interface. Finally, to execute the query,
the list() method is invoked.

For example:

crit.add(Expression.gt(“investementAmount”,
new Integer(900)));
      List list = crit.list();

The above statements are fired on the
investementAmount field of the Insurance
class, which specify the list of those records
that have the investment amount greater than
900.

Expressions:

The Hibernate Query API supports a rich set of
comparison operators with the Expression
class. The standard SQL operators (=, <, d”,
>, e”) are supported by the following methods
in the Expression class, respectively: eq(), lt(),
le(), gt(), ge().

Following important methods of the Expression
class are shown in the table:

Method Description
Expression.between This is used to apply a

“between” constraint to

the named property

Expression.eq This is used to apply
an “equal” constraint to
the named property

Expression.ge This is used to apply a
“greater than or equal”
constraint to the
named property

Expression.gt This is used to apply a
“greater than”
constraint to the
named property

Expression.lt This is used to apply a
“less than” constraint
to the named property

Expression.in This is used to apply
an “in” constraint to
the named property

Expression.le This is used to apply a
“less than or equal”
constraint to the
named property

Expression.and This returns the
conjunctions of two
expressions.

Expression.or This returns the
disjunction of the two
expressions.

2. Criterion

Another core API, in the relational approach
conditions is know as criterion. A criterion is
an instance of the interface
org.hibernate.criterion.Criterion. To retrieve
data based on certain conditions, Restriction
must be used on the criteria query. In other
words, Criterion is the object-oriented
representation of the “where” clause of a SQL
query.

3. Restrictions:

The class
org.hibernate.criterion.Restrictions defines
factory methods for obtaining certain built-in

Hibernate Query Language



   Mar-08   Java Jazz Up   47

Criterion types.

In code this would be:Criterion
crit=Restriction.eq(lngInsuranceId,5);
criteria.add(crit);

Following important methods of the Expression
class are shown in the table:

Method Description
Restriction.allEq This is used to

apply an “equals”
constraint to each
property in the key
set of a Map

Restriction.between This is used to
apply a “between”
constraint to the
named property

Restriction.eq This is used to
apply an “equal”
constraint to the
named property

Restriction.ge This is used to
apply a “greater
than or equal”
constraint to the
named property

Restriction.gt This is used to
apply a “greater
than” constraint to
the named property

Restriction.idEq This is used to
apply an “equal”
constraint to the
identifier property

Restriction.ilike This is case-
insensitive “like”,
similar to Postgres
ilike operator

Restriction.in This is used to apply
an “in” constraint to
the named property

Restriction.isNotNull This is used to apply
an “is not null”
constraint to the
named property

Restriction.isNull This is used to apply
an “is null” constraint
to the named
property

Restriction.le This is used to apply
a “less than or equal”
constraint to the
named property

Restriction.like This is used to apply
a “like” constraint to
the named property

Restriction.lt This is used to apply
a “less than”
constraint to the
named property

Restriction.ltProperty This is used to apply
a “less than”
constraint to two
properties

Restriction.ne This is used to apply
a “not equal”
constraint to the
named property

Restriction.neProperty This is used to apply
a “not equal”
constraint to two
properties

Restriction.not This returns the
negation of an
expression

Restriction.or This returns the
disjuction of two
expressions

The Hibernate criteria query API provides two
query types that allow programmatic fetching
of persistent objects: query by criteria (QBC)

Hibernate Query Language



48    Java Jazz Up   Mar-08

and query by example (QBE).

Lets take an example of query by criteria
(QBC) using Expressions. This example is
taking the same table Insurance as we have
used in our previous issue.

Consider the following table Insurance having
such records:

ID insurance invested investement
_name _amount _date
2 Life Insurance 250000000 00:00:00

-00-00

1 Jivan Dhara 200002007 17:29:05
-07-30

3Life Insurance 500 2005 00:00:00
-10-15

4Car Insurance 2500 2005 00:00:00
-01-01

5Dental Insurance 500 2004 00:00:00
-01-01

6Life Insurance 900 2003 00:00:00
-01-01

7Travel Insurance 2000 2005 00:00:00
-02-02

Here is the code of the class using “eq”
Expression:

package javajzzup.hibernate;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

import org.hibernate.Criteria;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
import org.hibernate.criterion.Expression;

public class
HibernateCriteriaQueryExpressionEq {

/**
 * @param args
 */
public static void main(String[] args) {

// TODO Auto-generated method stub

Session sess = null;
try{

SessionFactory fact = new
Configuration().configure().buildSessionFactory();

sess = fact.openSession();
Criteria crit =

sess.createCriteria(Insurance.class);
DateFormat format = new

SimpleDateFormat(“yyyy-MM-dd hh:mm:ss”);
    Date date = (Date)format.parse(“2005-

01-01 00:00:00”);

crit.add(Expression.eq(“investementDate”,date));
List list = crit.list();
for(Iterator it =

list.iterator();it.hasNext();){
Insurance ins = (Insurance)it.next();
System.out.println(“Id: “ +

ins.getLngInsuranceId());
System.out.println(“Insurance Name: “

+ ins.getInsuranceName());
System.out.println(“Insurance Amount:

“ + ins.getInvestementAmount());
System.out.println(“Investement Date: “ +

ins.getInvestementDate());
}
sess.clear();

}
catch(Exception e){

System.out.println(e.getMessage());
}

}
}

In the above code the crit.add(Expression.eq
(“investementDate”,date));  uses two
parameter e.g. eq(“property_name”,Object val).
It fetches those records from the table that
meets the specified date.

The output of this program will be shown as:

Hibernate Query Language



   Mar-08   Java Jazz Up   49

Download Program

4. Querying with Projections:

Projections are used to customize the results
from the database. In general Projection means
to retrieve; while in case of SQL Projection
means “Select” clause. The above code
retrieves all the rows from the ‘insurance’ table.
But what if only the data contained in one of
the fields has to be retrieved, as in the following
SQL query:

SELECT NAME FROM PRODUCT

Here, the Projection class comes into play. The
above query can be rewritten into a Criteria
query as:

ProjectionList proList =
Projections.projectionList();
proList.add(Projections.property(“name”));
crit.setProjection(proList);

In the above code, ProjectionList is the list of
projection instances, which are result of Query’s
object. The fieldname is passed as an argument
to the property() method of the Projection
class. The Projection instance returned in turn
becomes an argument to the setProjection()
method.

Now lets see an example of hibernate
projection:

In the class projectionExample.java, first a
session object created with the help of the
SessionFactory interface. Then use the
createQuery() method of the Session object
which returns a Query object. Now we use the
openSession() method of the SessionFactory
interface simply to instantiate the Session
object.

Then the criteria object is obtained simply by

invoking the createCriteria() method of the
Session’s object. Now create a projectionList
object add the fields having properties “name”
and “price”. Set it to the Criteria object by
invoking the setProjection() method and
passing the projectList object into this method
and then add this object into the List interface’s
list object and iterate this object list object to
display the data contained in this object.

Here is the full source code of
projectionExample.java:

package javajzzup.hibernate;

import java.util.Iterator;
import java.util.List;

import org.hibernate.Criteria;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
import org.hibernate.criterion.ProjectionList;
import org.hibernate.criterion.Projections;

public class projectionExample {

  /**
   * @param args
   */
  public static void main(String[] args) {
    // TODO Auto-generated method stub

    Session sess = null;
    try{
      SessionFactory sfact = new
Configuration().configure().buildSessionFactory();
      sess = sfact.openSession();
      Criteria crit =
sess.createCriteria(Product.class);
      ProjectionList proList =
Projections.projectionList();
      proList.add(Projections.property(“name”));
      proList.add(Projections.property(“price”));
      crit.setProjection(proList);
      List list = crit.list();
      Iterator it = list.iterator();
      if(!it.hasNext()){
        System.out.println(“No any data!”);

Hibernate Query Language



50    Java Jazz Up   Mar-08

      }
      else{
        while(it.hasNext()){
          Object[] row = (Object[])it.next();
          for(int i = 0; i < row.length;i++){
            System.out.print(row[i]);
            System.out.println();
          }
        }
      }
      sess.close();
    }
    catch(Exception e){
      System.out.println(e.getMessage());
    }
  }
}

Here is the code for Product.java to set the
class’s objects with the table’s fields.
package javajzzup.hibernate;

public class Product {

  private int id;
  private String name;
  private double price;
  private Dealer dealer;
  private int did;

  public Product(String name, double price)
{
    super();
    // TODO Auto-generated constructor stub
    this.name = name;
    this.price = price;
  }
  public Product() {
    super();
    // TODO Auto-generated constructor stub
  }
  public Dealer getDealer() {
    return dealer;
  }
  public void setDealer(Dealer dealer) {
    this.dealer = dealer;
  }

  public double getDid() {
    return did;
  }

  public void setDid(int did) {
    this.did = did;
  }

  public int getId() {
    return id;
  }
  public void setId(int id) {
    this.id = id;
  }
  public String getName() {
    return name;
  }
  public void setName(String name) {
    this.name = name;
  }
  public double getPrice() {
    return price;
  }
  public void setPrice(double price) {
    this.price = price;
  }

}

The output of this program will be shown as:

log4j:WARN No appenders could be found for
logger (org.hibernate.cfg.Environment).
log4j:WARN Please initialize the log4j system
properly.
Hibernate: select this_.name as y0_,
this_.price as y1_ from Product this_
Product Name      Price
Computer           23000.0
Mobile               15000.0
Laptop                200.0
Keyboard              1500.0
PenDrive                200.0
HardDisk          2500.0

Download example

5. Order

The Order class defined in the
org.hibernate.criterion package represents
the “order by” clause of SQL. By using the asc()
and desc() methods of this class, order can
be imposed upon the Criteria resultselt.

Hibernate Query Language



   Mar-08   Java Jazz Up   51

To order your query results, you use the
addOrder() method and the Order class:

List orde r=
session.createCriteria(Product.class)
           .add(Expression.lt(“price”, new
Integer(2000)))
           .addOrder( Order.asc(“name”) )
           .list();

The generated HQL query would be something
like:

from Product p order by p.name asc

Hibernate Query Language



52    Java Jazz Up   Mar-08

1. Using the Desktop class to launch a
URL with default browser in Java

This article describes the new Desktop API,
which allows Java applications to interact with
the default applications associated with specific
file types on the host platform.
This new functionality is provided by the
java.awt.Desktop class, which is adopted from
the JDesktop Integration Components
(JDIC) project.

The new Desktop API allows your Java
applications to do the following:

• Launch the host system’s default
browser with a specific Uniform
Resource Identifier (URI).

• Launch the host system’s default email
client

• Launch applications to open, edit, or
print files associated with those
applications

The sample code given below demonstrates
how to launch the host system’s default
browser with a specific Uniform Resource
Identifier (URI). Whenever this program is run,
it will automatically open a specified URL in the
system’s default browser.

Lets see the code of
DesktopClassToLaunch.java file.

import java.awt.Desktop;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
public class DesktopClassToLaunch {
  public static void main(String[] a) {
    try {
      URI uri = new URI(“http://
www.javajazzup.com”);
      Desktop desktop = null;
      if (Desktop.isDesktopSupported()) {
        desktop = Desktop.getDesktop();
      }
      if (desktop != null)
        desktop.browse(uri);
    } catch (IOException ioe) {

      ioe.printStackTrace();
    } catch (URISyntaxException use) {
      use.printStackTrace();
    }
  }
}

Desktop.isDesktopSupported() method to
determine whether the Desktop API is available.
After determining it, the application can retrieve
a Desktop instance using the static method
getDesktop().

After compiling and running this program, the
browser will be open with the URL
javajazzup.com automatically like:

Download Example

2. Display ToolTip within a specified area
on JFrame.

In Java, javax.swing package provides a class
known as JToolTip. This swing’s component
is used to display a “Tip” for another Component
and provides API to computerize the process
of using ToolTips.

For example, the JToolTip.setToolTipText
method is used to specify the text for a
standard tooltip. To create a custom ToolTip,
the JComponent’s createToolTip method is
overridden. It returns the instance of JToolTip
that should be used to display the tooltip.

URL Example with Desktop class



   Mar-08   Java Jazz Up   53

The given code in the DispalyTooltip.java file
has a label component. Whenever we move the
mouse on the particular component, a related
tooltip is displayed with the specified text.

DispalyTooltip.java

import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.*;
import javax.swing.JLabel;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JToolTip;
public class DisplayTooltip {
  public static void main(String args[]) {
    String title = “Tooltip Sample”;
    JFrame frame = new JFrame(title);
    frame.setDefaultCloseOperation
(JFrame.EXIT_ON_CLOSE);
    Container container =
frame.getContentPane();
    JPanel panel = new JPanel();
    panel.setToolTipText(“<HtMl>
Tooltip<br>Message”);
    container.add(panel,
BorderLayout.CENTER);
    JLabel label = new JLabel(“Hello World”) {
      public JToolTip createToolTip() {
        JToolTip tip = super.createToolTip();
        tip.setBackground(Color.red);
        tip.setForeground(Color.green);
        return tip;
      }
      public boolean contains(int x, int y) {
        if (x < 100) {
          setToolTipText(“Got Component”);
        } else {
          setToolTipText(“Got Frame”);
        }
        return super.contains(x, y);
      }
    };
    label.setToolTipText(“Hello World”);
    frame.getContentPane().add(label,
BorderLayout.NORTH);
    frame.setSize(300, 150);
    frame.setVisible(true);
  }
}

Lets see the outputs from the three kinds of
ToolTips.

1. Move the mouse on the Label component.

2. Move mouse outside of the component
area.

3. Move mouse outside of the frame area.

Download Example

3. Shuffle the elements of a Collection using
ArrayList interface.

URL Example with Desktop class



54    Java Jazz Up   Mar-08

The Collections class which can be found within
the java.util namespace provides two methods
that suffle the elements of a Collection.

static void shuffle(List<?> list)
static void shuffle(List<?> list, Random
rnd)

The first method shuffles the elements
according to a default source of randomness,
while the second uses a specified source of
randomness. The random number methods
generate numbers with replacement. This means
that, a particular random number may be
generated repeatedly.

The example below shows how to produce the
values from 0 to 50 in a random order.

ShuffleExample.java

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class ShuffleExample {
  public static void main(String args[]) {
    String str[] = { “A”, “B”, “C”, “D”, “E” };
// Create a list1 with elements
    List list1 = Arrays.asList(str);
      Random rand = new Random(50);
  // Shuffle the elements in the list
    Collections.shuffle(list1, rand);
   System.out.println(list1);
          Collections.shuffle(list1, rand);

    System.out.println(list1);
  }

}

In this program, the output will be generated
different each times when we shuffle the list of
a Collection.

C:\Tips&Tricks>javac ShuffleTest.java
C:\Tips&Tricks>java ShuffleTest
[A, B, D, E, C]
[A, D, E, C, B]

Download Example

4. Password Prompting with

java.io.Console

The new released JDK6 includes a new Console
class, which can be found in the java.io
package. This class adds some new features to
enhance and simplify command-line applications.
It includes a method specifically for reading
passwords that disables console echo and
returns a char array for security purpose.

The example given below read the password
from the console but the password will not be
echoed to the console screen. If the given
password matches with the specified characters
as “javajazzup” then a message “Access
granted” is displayed; otherwise it displays
“Access denied” as an output.

PasswordPrompting.java

import java.io.Console;
import java.util.Arrays;
public class PasswordPrompting {
  public static void main(String[] args) {
    Console console = System.console();
    if (console == null) {
      System.out.println(“Console is not
available”);
      System.exit(1);
    }char[] password =
“javajazzup”.toCharArray();

/* Read password, the password will not be
echoed to the console screen and returned as
an array of characters.*/
    char[] passwordEntered =
console.readPassword(“Enter password: “);
    if (Arrays.equals(password,
passwordEntered)) {
      System.out.println(“\n Access granted
\n”);

   // Clear the password after validation
successful

   Arrays.fill(password, ‘ ‘);
      Arrays.fill(passwordEntered, ‘ ‘);
    } else {
      System.out.println(“Access denied”);
      System.exit(1);
    }
  }
}

URL Example with Desktop class



   Mar-08   Java Jazz Up   55

See the output when you type “javajazzup” as
a password:

C:\Tips&Tricks>java PasswordPromptingDemo
Enter password:

Access granted

And when you type another password:

C:\Tips&Tricks>java PasswordPromptingDemo
Enter password:

Access denied

Download Example

5. Drag and drop between JTextArea and
JtextField

In Java, DnD is a data transfer API. The user
transfers the data from one place to another
by using the mouse (usually). One selects
something with a mouse press, drags it (moves
the mouse while keeping the mouse button
pressed) and releases the mouse button
someplace else. When the button is released
the data is “dropped” at that location.

The example given below shows how to use
the drag-and-drop support built into Swing
components. This program contains a TextArea
and TextField with some specified text. The
setDragEnabled method having a true
argument of each swing’s make it as a drag
and droppable component.

DnDFieldDemo.java

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
public class DnDFieldDemo {
  public static void main(String[] args) {
    JFrame frame = new JFrame(“Drag and
Drop Demo”);
    frame.setDefaultCloseOperation
(JFrame.EXIT_ON_CLOSE);
    frame.setContentPane(new JPanel());
    JTextField textField = new JTextField(25);

URL Example with Desktop class

    textField.setText(“www.javajazzup.com”);
    frame.add(textField);
    JTextArea textArea = new JTextArea(4,
25);
    textArea.setText(“drag and drop”);
    frame.getContentPane().add(new
JScrollPane(textArea));
    textArea.setDragEnabled(true);
    textField.setDragEnabled(true);
    frame.pack();
    frame.setVisible(true);
  }
}

The output will be show as:

Now you can drag and drop the text between
TextField and TextArea.

Download Example



56    Java Jazz Up   Mar-08

Advertise with JavaJazzUp
We are the top most providers of technology
stuffs to the java community. Our technology
portal network is providing standard tutorials,
articles, news and reviews on the Java
technologies to the industrial technocrats. Our
network is getting around 3 million hits per
month and its increasing with a great pace.

For a long time we have endeavored to provide
quality information to our readers. Furthermore,
we have succeeded in the dissemination of the
information on technical and scientific facets of
IT community providing an added value and
returns to the readers.

We have serious folks that depend on our site
for real solutions to development problems.

JavaJazzUp Network comprises of :

http://www.roseindia.net
http://www.newstrackindia.com
http://www.javajazzup.com
http://www.allcooljobs.com

Advertisement Options:

Banner  Size Page Views  Monthly
Top Banner 470*80 5,00,000 USD 2,000
Box Banner 125 * 125 5,00,000 USD 800
Banner 460x60 5,00,000 USD 1,200
Pay Links Un Limited USD 1,000
Pop Up Banners Un Limited USD 4,000

The http://www.roseindia.net network is the
“real deal” for technical Java professionals.
Contact me today to discuss your
customized sponsorship program. You may
also ask about advertising on other
Technology Network.

Deepak Kumar
deepak@roseindia.net



   Mar-08   Java Jazz Up   57

Valued JavaJazzup Readers Community

We invite you to post Java-technology
oriented stuff. It would be our pleasure
to give space to your posts in
JavaJazzup.

Contribute to Readers Forum

If theres something youre curious about, were
confident that your curiosity, combined with the
knowledge of other participants, will be enough
to generate a useful and exciting Readers
Forum. If theres a topic you feel needs to be
discussed at JavaJazzup, its up to you to get it
discussed.

Convene a discussion on a specific subject

If you have a topic youd like to talk about .
Whether its something you think lots of people
will be interested in, or a narrow topic only a
few people may care about, your article will
attract  people interested in talking about it at
the Readers Forum. If you like, you can prepare
a really a good article to explain what youre
interested to tell java technocrates about.

Sharing Expertise on Java Technologies

If youre a great expert on a subject in java,
the years you spent developing that expertise
and want to share it with others. If theres
something youre an expert on that you think
other technocrates might like to know about,
wed love to set you up in the Readers Forum
and let people ask you questions.

Show your innovation

We invite people to demonstrate innovative
ideas and projects. These can be online or
technology-related innovations that would bring
you a great appreciations and recognition
among the java technocrates around the globe.

Hands-on technology demonstrations

Some people are Internet experts. Some are
barely familiar with the web. If you’d like to show
others aroud some familiar sites and tools, that
would be great. It would be our pleasure to
give you a chance to provide your
demonstrations on such issues : How to set

up a blog, how to get your images onto Flickr,
How to get your videos onto YouTube,
demonstrations of P2P software, a tour of
MySpace, a tour of Second Life (or let us know
if there are other tools or technologies you
think people should know about...).

Present a question, problem, or puzzle

Were inviting people from lots of different
worlds. We do not expect everybody at Readers
Forum to be an expert in some areas. Your
expertise is a real resource you may contribute
to the Java Jazzup. We want your curiosity to
be a resource, too. You can also present a
question, problem, or puzzle that revolves
around java technologies along with their
solution that you think would get really
appreciated by the java readers around the
globe.

Post resourceful URLs

If you think you know such URL links which
can really help the readers to explore their java
skills. Even you can post general URLs that
you think would be really appreciated by the
readers community.

Anything else

If you have another idea for something youd
like to do, talk to us. If you want to do
something that we havent thought of, have a
crazy idea, wed really love to hear about it.
Were open to all sorts of suggestions, especially
if they promote readers participation.



58    Java Jazz Up   Mar-08



   Mar-08   Java Jazz Up   59


